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Abstract. To compute optimal paths between locations in road networks is an important operation for e.g. transport business. 
Efficient algorithms for path planning usually assume a single start and a single target. In some scenarios, however, we want 
to compute all shortest paths from a set of starts to a set of targets. If we use the one-to-one planning in a loop, we consider 
each path as an independent computation. The drawback: we cannot take benefit of similarities between planning steps. In 
this paper, we present an approach that addresses this problem and provides a many-to-many path planning. An example 
that is heavily based on many-to-many path planning: given a home depot and a set of delivery points, what is the optimal 
round-trip that starts at the home depot, approaches each delivery point and turns back to the home depot. This problem is 
known as the Traveling Salesman Problem, but usually it is not applied to real road networks. In this paper we describe the 
efficient many-to-many path planning that is based on A*. It significantly reduces the number of visited crossings due to com-
putation similarities. We adapt the approach to provide a solution for the Traveling Salesman Problem on road networks.  
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1. Introduction 

Route planning on road networks is a well understood problem. Network services and on-board ap-
plications are able to compute routes from position to position. Resulting routes minimize ‘costs’ such as 
time, distance, fuel consumptions or road charges. Route planning algorithms usually are based on 
Dijkstra’s shortest path approach or the A* algorithm. A* takes into account additional knowledge about 
road networks, modeled as future path cost estimation. With this, the computation is significantly faster 
while the optimality of results is kept. 

A* is created to compute a route from a single starting point to a single target. For some scenarios, 
however, all routes from multiple starts to multiple targets are required. Examples:  

— For a transport company we could request an optimal round-trip from the warehouse to all clients and 
back to the warehouse. This problem is known as the Traveling Salesman Problem (TSP). Even though 
we know algorithms that solve the TSP in practice, the algorithms assume that the distances between 
all pairs of target positions are known beforehand. 

— For the more general problem, the so called Vehicle Routing Problem (VRP) [19], we have to deal with a 
fleet of vehicles, multiple depots and delivery points and want to distribute goods, while the overall 
transportation costs have to be minimized. 

— Advanced Geo Information Systems (GIS) can be used to perform statistics on geo objects. More and 
more not only geometric conditions are considered (e.g. objects that are closer than 1 km to a location), 
but also the driving or walking distances. E.g. a GIS could be asked: ‘present all pairs of 
hotels/conference sites that are in a walking distance of less than 10 minutes’. 

— If we use GPS to supervise driving, we have to map an inaccurate GPS measurement to a road position. 
Very often, multiple road positions could be possible for a single GPS measurement. A simple approach 
maps a position to the nearest road point. A more sophisticated approach would take multiple succes-
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sive measurements, then compute the routes between all combinations of possible road points and 
select the route that fits best to the elapsed driving time. 

 
All these examples need the many-to-many path planning as a basic operation. In principle, we could 
iterate through all pairs of starts and targets and execute the one-to-one-A*. Dependent on the respective 
implementation, execution platform, road network and routing tasks a single execution can take from 
100 ms up to several seconds. Thus we have to face long executions for all combinations. 

In this paper we introduce an efficient approach of multiple starts to multiple targets route planning. 
It is based on A* but the idea is to share planning results between iterations. The overall result is the 
same compared to the iterative execution of A*. Moreover, we take benefit of A* speed-up (compared to 
Dijkstra), based on the future path cost estimation and additional heuristics.  

After describing the approach in detail, we present an important application of many-to-many routing: 
the Traveling Salesman Problem. 

2. Related work 

Virtually all route planning algorithms are based on Dijkstra’s shortest path algorithm [6] or A* [9]. Both 
are similar – we can even consider the Dijkstra algorithm as a special case of A* if we set the future path 
cost estimation to zero. The idea of both algorithms: we model the road network as a graph of nodes 
(crossings between roads) and edges (road segments between crossings). Cost values assigned to edges 
reflect the property, an optimal route should minimize. It depends on the actual application to choose 
appropriate costs. Very often the time to drive through a road segment is used. This is based on the road 
type (e.g. urban, highway), road geometry (e.g. bent, straight, steep) and speed limit. 

Both algorithms begin from the start node and consecutively visit further nodes that are connected to 
the currently visited area. ‘To visit’ means: the total costs from start to this node are assigned and the 
algorithm knows the optimal route to this node. There is an important difference between the two 
algorithms: Dijkstra’s algorithm visits all nodes with costs lower than the costs to the target. This means, 
also nodes are visited that reasonably cannot be part of the final route due to worst case considerations. In 
other words, Dijkstra tries to find the optimal route in all directions. A* visits far fewer nodes. Dependent 
on the future path cost estimation, A* visits only nodes that could in principle be part of the best route. 
Very often, the maximum speed on the beeline is used as estimation. Advanced approaches such as 
Landmarks and Triangle Inequality (ALT) [10] can provide a much better estimation, as they incorporate 
precomputed results into the estimation function.  

For the one-to-one case, A* is more efficient than Dijkstra. On the other hand, as Dijkstra does not 
prefer a direction, it already provides the capability for one-to-many routing: we simply visit all nodes 
until all targets are included. For A* this approach would be crucial as the future path cost estimation is 
only suitable for a single target. This is one problem solved with our approach. 

The idea to use Dijkstra for one-to-all planning is implemented in the PHAST approach [4]: it uses a 
Dijkstra approach without a stop condition, thus all nodes in the network are visited as potential target. 
To improve the execution speed, PHAST is based on so called Contraction Hierarchies (CH). A CH is a 
simplified road network that contains ‘more important’ nodes, e.g. nodes on fast roads. If two neighbors of 
a node take this node as shortest connections, the node can be removed and a new edge with the sum cost 
is added. The resulting simplified graph has to be computed beforehand. During route planning, the 
simplified graph is used as often as possible to reduce execution time.  

The successor approach RPHAST [5] developed this idea for the one-to-many case: it reduces the CH 
graph to the respective targets. Similar approaches are Hub Labeling [1] or Highway Hierarchies [12] that 
are also based on a modified Dijkstra approach and incorporate similar techniques to simplify a road 
network graph. 

The major drawback of Dijkstra-based approaches: even though the respective speed-up techniques 
ensure reasonable runtime behavior, the algorithms visit too many nodes that do not belong to result 
routes. This is because Dijkstra is not target-oriented in the way it selects the next node to visit. In 
contrast, A* uses the future path cost estimation that provides a target-oriented development of the 
visited area, while it remains optimal. 
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Another type of navigation approaches are based on swarm intelligence. As a basic idea: a number of 
individuals (often called ants), represent different alternatives to find a route to a target. Individuals are 
controlled by a cost function that attracts them to the target, often compared to pheromone. If the 
population is large, a huge number of alternatives is checked simultaneously, thus the result is close to 
optimality. Swarm intelligence is often applied in the area of robot routing [13] or communication 
networks, especially ad-hoc networks [18]. This is because the swarm intelligence is able to deal with 
uncertain environments that quickly change during execution. The drawback: the results depend on the 
random behavior of the individuals, thus is only an approximation. In our case, we have the perfect 
knowledge of the road network that does not change at runtime, thus we are able to achieve the 
theoretically optimal result. As a second drawback of the swarm approach: to deal with multiple starts 
and targets contradicts the idea of an ant colony where each ant deals with a single goal (e.g. to follow the 
virtual pheromone track). As a result we had to significantly increase to population to achieve appropriate 
results.  

Many-to-many algorithms that base on the one-to-many path planning have an additional drawback: 
the respective iterations can be considered as isolated execution. But ideally, successive executions with 
nearby starting points should heavily benefit from former results with similar routes. Our novel approach 
addresses all these drawbacks and is fully built upon the A* approach, thus heavily benefiting from the 
target-oriented execution. Advanced optimization techniques for the one-to-one-A* (e.g. ALT estimation) 
can still be integrated to the many-to-many-case. In addition, techniques to simplify the road graph (e.g. 
CHs) can also be applied.  

A problem that is usually ignored by related approaches is the problem of crossing link displacement: 
even though graph-based algorithms compute routes from crossing to crossing, in reality starts and tar-
gets are not on crossings, but are somewhere on a link between crossings. If we are able start a route in 
both driving directions (no one-way road), two entirely different routes may be the result. The same 
applies to the target. Many routing approaches either assume a known driving direction or simply take 
the geometrically nearest crossing. An ideal many-to-many routing approach should also solve the 
crossing link displacement problem. 

3. One-to-one-A* 

In order to present our multi-routing approach, we first describe the A* approach that computes routes 
from a single crossing to a single crossing. The later multi-routing approach heavily reuses A* whereas it 
avoids re-occurring computations. As mentioned above, we need a road graph: for each crossing qi we know 
its directly connected crossings qj and the driving costs c(qi, qj) to get there. We call a connection between 
crossings qi, qj a link. 

Costs c(qi, qj) can be any non-negative numbers. In reality c(qi, qj)c(qj, qi) for many links due to, e.g., 
different speed limits or one-way roads. 

The output route is a sequence of crossings (start, qi1, qi2,… target) that minimizes the sum of link costs. 
In order to execute route planning in a target-oriented manner, A* additionally requires a future path cost 
estimation function h(qi, target) that provides a lower bound of costs for the route termination. The more h 
reaches the actual costs, the better A* performs. 
Algorithm 1 presents the A* approach. Some remarks: 

— g[qi] contains the currently assumed costs from start to crossing qi. 

— f[qi] contains the currently estimated total costs from start to target, if a route goes through qi. 

— We assign one of three states to each crossing: not_visited, open (g not finally computed), closed (optimal 
route from start discovered). In the algorithm above, ‘expand crossing’ means: take an open crossing and 
check all its neighbors. 

— To efficiently get the open crossing with the minimal f, we additionally need a priority queue openList 
that internally keeps the list sorted whenever an open crossing is added. 

— If qi is closed, g[qi] contains the minimal costs from start to qi. If qi is open, g[qi] may be still larger than 
the minimal costs. 

— For closed crossings qi, the link (backLink[qi], qi) is the last link of the optimal route from start to qi. 
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— Once we polled target from the openList, the optimal route is discovered. We then can easily collect the 
optimal route from start, following the backLink entries. 

Even though the primary computation result is the backLink array, we also consider the g array as 
important output. For each crossing with state closed, the g array provides the minimal costs to get there 
from the start. 
Note that h plays an important role for performance. Formally, the algorithm only requires h to be 
optimistic, but as mentioned earlier, good estimations can significantly reduce the number of visited 
crossings. In the following we consider h as a black box. We in particular do not require a special h 
function for our multi-routing approach. However, our approach will benefit from good h in the same way 
as A*. 

ALGORITHM 1. One-to-one-A* 
 
A_star(start, target) 
    g[start]0; f[start]0; state[start]open; openList.add(start);  
    for all qistart {  
         g[qi] -1;  f[qi]0;  state[qi]not_visited;  
    } 
 
    do { 
         qiopenList.poll();  // get qi with state open and minimal f[qi] 
         if qi=target return success;  
         state[qi]closed; 
 
         for all neighbors qj of qi {            // ‘expand’ crossing 
              if state[qj] closed { 
                   gnewg[qi]+c(qi, qj); 
                   fnewgnew+h(qj, target); 
                   if state[qj]=not_visited or fnew<f[qj] { 
                       g[qj]gnew;   f[qj]fnew; 
                       backLink[qj]qj; 

                   state[qj]open; 
                   openList.add(qj); 

                   } 
              } 
         }      
    } while not openList.isEmpty(); 
    return failure;  // no route at all from start to target  
  

 

4. Multi routing with EMMA 

We now describe EMMA (Efficient Many-to-Many-A*) to efficiently execute a route planning from 
multiple starts to multiple targets. 

In principle we could execute the one-to-one-A* in two nested loops that iterate through all starts and 
targets. However, we can significantly speed up the execution, if we heavily reuse results from former 
iterations. We start with some observations: 

— An ideal A* execution would only compute closed crossings that are on the optimal route. Even though 
we have h functions that are very close to the actual costs, typical A* executions expand 100 to 1000 
times more crossings. This is information we could use both for other targets and other starts.  
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— A* iterates through all non-closed neighbors and checks, if the target can be reached more efficiently by 
this neighbor. If we knew the right neighbor from previous executions, we could significantly reduce the 
number of wrongly expanded crossings.  

These observations lead to two basic mechanisms for many-to-many route planning namely g array 
recycling and route-oriented expansion. The EMMA execution is divided into two phases: 

— The Preparation Phase takes a list of start and target links and computes the g and backLink arrays for 
all pairs of start/target. 

— In the Query Phase we can query for optimal routes between any given start and target points. Each 
query is executed in a small constant time. We only require start and target points to reside anywhere 
on links passed to the Preparation Phase. 

 
The idea is to run the more costly Preparation Phase once and compute routes in the Query Phase as often 
as required. Note that the preparation phase is executed for every new set of starts/targets. It should not 
be confused with a preparation of e.g. Contraction Hierarchies that is executed once for a road network. 

In the following we describe the EMMA approach in detail. Even though we finally want to solve the 
many-to-many path planning problem, we in the following shift the view to one-to-many and many-to-one 
path planning to simplify the description. 

4.1 The preparation phase 

In the first step we take the list of start and target links that contain the later positions for route queries. 
Even though the start and target positions can be anywhere between crossings, the preparation is based 
on a crossing-to-crossing planning. The processing of starts and targets between crossings is shifted to the 
Query Phase. 
 

 
Fig. 1. Selection of crossings from start links 

Figure 1 shows an example road network. Each link holds a cost value seconds to drive through this link; 
in further images we omit these values for better clarity. Apart from the one-way road L2 we assume same 
costs for both directions. 

We start with a set of three links L1…L3 that contain future starting positions of the Query Phase. 
Figure 1 illustrates how these start links are mapped to the respective crossings denoted by . Every link 
connects two crossings, but if a crossing occurs twice (e.g. C2), it is only added once. If a link is one-way (e.g. 
L2), only the next crossing in driving direction is considered (e.g. C4). The mapping of target links works in 
the same way; we only use the opposite crossing for one-way links. 

The caller of the navigation function can force a driving direction for any link, e.g. may request that a 
route starting at L1 always must start in direction to C2. This is useful, if the caller has knowledge about 
additional planning constraints. E.g., a car starting in a specific link may always park in a certain driving 
direction. We require this feature in our solution of the Traveling Salesman Problem later. The caller is 
free not to restrict the start and target link; then, both directions are considered. 

4.1.1 One-to-many routing and g array recycling 

We first assume, we only have one start and want to efficiently compute optimal routes to multiple 
targets. Having a deeper look at A* we can see, from the internal structures state, f, g and backLink only f 
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depends on the target. This is because f is the sum of g and h, and h is the cost estimation to the target. 
The other structures are assigned from the view of the start and never take into account the target. These 
are candidates to re-use for different targets.  

Let statex, fx, gx and backLinkx denote the structures used for certain target targetx. For routes from start to 
two targets targeta, targetb we get 

— If statea=stateb=closed then ga[qi]=gb[qi] and backLinka[qi]=backLinkb[qi]; 

— But fa[qi]fb[qi] for most qi. 
 
If the route to targeta was found, we are able to speed up the computation for targetb: we replace the 
initialization of the structures for targetb as follows. 

ALGORITHM 2. New Initialization 
 
    gbga;  
    statebstatea; 
    backLinkb backLinka; 
    openListbopenLista; 

for all qi in openListb 
    fb[qi]gb[qi]+h(qi, targetb) 
sort openListb according to fb 

  

 
Note that in reality, we do not copy large arrays in memory. E.g. as ga is not used any longer, we simply 
can use it as gb. We distinguish both targets in the pseudo code for better clarity.  

Reusing the structures ga, statea and backLinka for targetb is obviously a reasonable approach as the 
second execution would compute the same values. Even though we reuse multiple structures, we call this 
approach the g array recycling. 

This idea is illustrated in Fig. 2. The iteration to target1 visits a certain set of crossings. The iteration b) 
can be executed in the former ‘footprint’, while only new crossings have to be visited. The best benefit 
shows c): the new target is a formerly closed crossing. This means the iteration can immediately finish, as 
the respective route is already known. 

As the area of non-visited crossings gets smaller after each iteration, we have a good chance to save 
time for a new iteration. The benefit gets greater, if targets are either close together or targets are close to 
a formerly computed route. If a target is part of the computed g array for former targets, no computation 
is performed at all. 

Reusing openLista is not obvious and needs explanation. As we first adapt the f values for all open 
crossings to the next target, these are correct. But we still have to argue, why the crossings in openLista 
also lead to a correct execution for targetb. Note that a plain execution for targetb would start with an 
openList=(start). 

We can prove the correctness of this approach as follows: The main do loop in the algorithm perma-
nently modifies the stateb, gb and backLinkb. We now have to find a possible sequence of steps in the original 
A* after which we also would get (openListb, stateb)=(openLista, statea). If there was such a sequence, the 
further execution (which then is unmodified A*) also must be correct.  
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Fig. 2. Idea of the g array recycling 

The only means to change the sequence of expanded crossings is the h function. We introduce a modified 
estimation function h' as follows: 
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Obviously h' still is optimistic, thus leads to correct results. Using h', the iterations first expand and close 
all crossing that also were closed for targeta. Due to the h' value of 0 no other crossings are closed, as the 
respective f value is minimal for all open crossings. As a result, the execution for targetb with h' produces 
our initial values. In other words: our initial values could also be a result of an unmodified A* execution. 

The only drawback of this procedure: f values of open crossings have to be recomputed for a new target. 
This means we have to sum the g entry (that is already computed) and the h function result (that from its 
nature has a quick execution) in a loop and reorder the openList due to the new f value.  

One last point has to be clarified regarding the state of the target crossing: the original A* polls it from 
openList and terminates without modifying the state. This actually leaves an inconsistent entry: the 
crossing now is neither open nor closed. Now, as we recycle the g array, we have to be more careful. We can 
simply solve this, if we just re-insert the target to openList on termination. As the target’s neighbors have 
not been visited, the target crossing must remain open. 

Figure 3 shows an execution of the one-to-many case on real data. The road network contains 11 
million crossings and 28 million unidirectional links. We subsequently performed a route planning to four 
targets. The dark regions show the area of newly visited crossings after an iteration. The light areas 
indicate the crossings that would have additionally been visited if we used the one-to-one-A*. We can 
easily see: compared to the one-to-one-A* our approach usually visits a smaller amount of new crossings. 
For, e.g., target2 and target4 nearly all crossings already have been expanded during a former iteration and 
only a very small amount has to be newly visited. 
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Fig. 3. The one-to-many case in a real road network (newly visited crossings,  

dark regions and crossings that one-to-one had visited, light regions) 

Note that the regions are only a graphical representation of a set of crossings. We used a concave hull 
function [8] to present the set of crossings by closed polygons for better clarity. 

If we planned all four routes separately in this example, we would have visited 52203 crossings. With g 
array recycling we only visited 24805 crossings. This is a speed-up factor of 2.1. We have to recompute the 
f values of 5629 crossings. 

The improvement would get larger for more targets, especially, if some of them are close together. The 
theoretic boundary value is a speed-up by factor n for n targets. 

4.1.2 Many-to-one routing and route-oriented expansion 

The second optimization takes the view of a single target. The idea is to store optimal routes from former 
starts to this target. Whenever we expand any crossing that already resides on a formerly stored route 
later, we already know the optimal route. We can use this to significantly save computation time. 

Figure 4 illustrates the idea. In a) the route from start1 to target is discovered. In b) the search goes from 
start2 until the crossing marked with ‘*’ is visited: here, we do not have to add all neighbors to openList, but 
only the next hop to target marked with ‘!’ as this must be the only appropriate neighbor. The same 
applies to start3 in c). We call this route-oriented expansion, which can be summarized as follows: 

— Whenever we found a route, we store the next hop neighbor for all crossings that belong to this route 
(presented by solid arrows in Fig. 4). We accumulate these entries for further starts. 

— Whenever we poll a crossing from openList that holds such a stored direction, we modify the expansion: 
We do not iterate through all neighbors but only take the next hop neighbor that is formerly stored. For 
this neighbor we proceed as usual, i.e. we open it (if not already) and modify the g and f entries. 

 
It is important to note that this improvement does not affect correctness and optimality. We are not forced 
to use the existing route from all starts; alternative (potentially better) routes still can ‘win’ against 
existing routes. But it requires fewer visits to discover such solutions because for an increasing number of 
crossings, only a single neighbor has to be expanded. The benefit gets greater for more starts as the prob-
ability to expand into an existing route gets higher. 
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Fig. 4. Idea of route-oriented expansion 

We can show the correctness for the approach as follows: Let Rt be the sequence of crossings of the 
formerly computed routes from startt. To compute a new route Rs, our route-oriented expansion ignores 
links that leave any former route. We can express this by a modified cost function c's: 
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We have to ensure that the optimal route from starts does not contain a link (qi, qj) with ),(' jis qqc . This 
obviously cannot happen, as qi was part of an optimal route to the same target (though another startt) and 
the optimal route did not go through qj. In other words: two routes from different starts and same target 
cannot cross – they have to be identical from the first shared crossing (that may at least be the target). 

Figure 5 shows the route planning for four starts to a single target. The dark areas show the visited 
crossings for route-oriented expansion. The light areas again illustrate the additional crossings that would 
have been visited for the one-to-one-A* approach. We can easily see the benefit for start2…start4. As the 
western part of the routes is identical for all starts, route-oriented expansion omits the expansion of the 
respective neighbor crossings. In contrast to the g array recycling, this approach does not require any 
recomputation. 

Some statistics: If we planned all four routes separately, we had to visit 17105 crossings. Using route-
oriented expansion we only visited 9650. This is a speed-up factor of 1.77. 

Similar to the g array recycling, the speed-up depends on the respective routing task. The improve-
ment gets larger for more starts, especially, if some of them are close together. The boundary value is a 
speed-up by factor n for n starts. 

4.1.3 Many-to-many routing and the shielded target problem 

The g array recycling and route-oriented expansion both independently work correctly, i.e., the computed 
routes are theoretical optimal. The next step is to put both together: 
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Fig. 5. The many-to-one case in a real road network 

— The main loop iterates through the list of starts. 

— For each start, we route to all targets using the g array recycling. 

— We store all routes to a target and apply route-oriented expansion whenever possible. 
 
On the first glance, this approach is reasonable and takes the benefit of both methods. However, we get a 
new problem that only occurs in combination – we call it the shielded target problem. 

Figure 6 presents a scenario with 3 starts and 2 targets. We assume the iterations for start1 and start2 to 
the two targets already have been finished and we now execute the iteration from start3 to target1. At the 
time we visited the crossing marked with ‘*’ we use route-oriented expansion with the former route from 
start1 to target1. This iteration terminates correctly. 

If we now want to plan from start3 to target2, the g array recycling leads to a problem: the crossing 
marked with ‘!’ is still not_visited. This was, because the crossing ‘*’ prevents its opening due to route-
oriented expansion. As a result, the link from ‘*’ to ‘!’ cannot be part of a computed route any more for 
further targets. In this case, either only suboptimal routes are found, or in some cases, no route at all will 
be discovered. 

 

 
Fig. 6. The shielded target problem 
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As a solution, we introduce a second open state. 

— During an expansion step: whenever neighbors are filtered out due to route-oriented expansion they are 
marked as open_not_followed. They not will appear in the openList. 

— If for the next target we apply g array recycling, the new openList is the union of the former openList and 
the former list of open_not_followed crossings. 

— To easily collect all crossings that are open_not_followed, we introduce a new list openListNotFollowed. As 
it is not required to quickly retrieve special objects (such as for the poll operation), we can use a simple 
container structure (e.g. hash set) for this list. 

 
Figure 7 shows the corrected execution. 
 

 
Fig. 7. Solution of the shielded target problem with a second open state 

In a) we see the normal execution, but some crossings are stated as open_not_followed. These are in b) 
joined with the former openList to start a route to target2; c) shows the final, correct result. 

4.2 The query phase and the link displacement problem 

The situation after the Preparation Phase terminated: from all involved start crossings we know the 
optimal path and costs to all involved target crossings. The Query Phase allows querying for start and 
target positions between crossings, i.e. the Query Phase mainly solves the crossing link displacement 
problem. 

As mentioned before, this problem is usually ignored, even though it must be addressed by real 
applications. Especially if we have long road segments, a simple approximation (e.g. map the position to 
the nearest crossing) may result in suboptimal routes. 

An ad-hoc solution would temporarily add the requested locations as new start and target crossings to 
the road network and splits up the respective links. Theoretically easy, this solution may not be applicable 
in real route planning applications. The reason: usually the road network is stored in a highly optimized 
data structure that both stores topological as well as geometric information. The latter is used for map 
display or to generate navigation commands. In addition the structure contains spatial index information 
and undergoes compression procedures to safe memory. Thus, it usually is critical to integrate new start 
and target positions. 
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EMMA solves this problem without the need to change the road network. Moreover, the Query Phase 
allows to query for routes from any starting and to any target point on previously registered links in 
constant time. 

Figure 8 shows a link between the crossings A and B. The real position Pos resides anywhere between 
these crossings. We assume the position is already mapped to the road’s linestring geometry. We further 
assume, there exists a function  that can compute the real length of line string segments. This function 
has to compute the length in an appropriate scale unit. E.g. if costs are base on speed, we have to process 
a length in meters or miles and but not degrees. As usually linestring geometries on the Earth’s surface 
are stored in latitude/longitude degrees, a geodesic mapping is required. 
 

 
Fig. 8. Costs of a segmented road 

For a link AB with two driving directions, we got a total of four directed segments with respective partial 
costs: two outgoing costs 

ABc , 
BAc  (used for starts) and two ingoing costs 

ABc , 
BAc  (used for targets). 

Partial costs may base on motion models that e.g. consider acceleration. In most cases a linear relation is 
sufficient, i.e. 
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If we have a start link AB and a target link CD, we need four comparisons as shown in Figure 9 to find the 
best route.  
 

 
Fig. 9. Comparisons to find the optimal route between link positions 
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Some remarks: 

— The costs for AB, BA, CD and DC are stored in the road network, thus the four partial costs ( 
ABc , 

BAc , 

CDc , 

DCc ) can instantly be computed. The route costs from crossing to crossing (i.e., costs(A, C), costs(A, 
D), costs(B, C), costs(B, D)) are already computed in the Preparation Phase. Thus the four comparisons 
can be executed with only few instructions. 

— We may reduce the four comparisons to two or even one, if links have a restricted direction. This can 
either be because they are one-way roads or the caller of the query restricted the starting or target 
direction due to additional knowledge. E.g. the caller may know the parking position, thus only allows 
starting in a certain direction. 

— We have to deal with the special case AB=CD or AB=DC. This means we have a road segment between 
two positions on the same link. This does not necessarily mean the shortest path is on the respective 
link, but this path has explicitly to be taken into account as a potential solution. 
 

The caller of the EMMA multi-routing now easily is able to query all pairs of start and target positions to 
get the respective optimal route. 

5. Traveling salesman on real road networks 

We now apply the solution to the well-known Traveling Salesman Problem (TSP) [11]. One important use 
case is logistics and carrying business. The problem is to find an optimal round-trip to a given set of 
locations. E.g. consider the locations are the home depot and a set of delivery points: the problem is to find 
the optimal (e.g. shortest) round-trip that starts and ends at the depot and visits each delivery point once. 
Similar examples are 

— Mail: Find a round-trip for a postman to all houses; 

— Sightseeing tours: A tourist bus has to visit all sights of a city and drive back to the hotel. 
 
Solutions have to execute two tasks:  

— Discover a matrix of costs between all pairs of targets; 

— Find a sequence of locations that minimizes the sum of costs. 
 
The second task is subject of intensive research. The problem to find the theoretical optimal sequence is 
NP-hard; no polynomial-time solution is known. Fortunately, there exist good approximations that either 
produce optimal or acceptable suboptimal round-trips. 

5.1 Computing the cost matrix 

The first problem usually is ignored by researchers in the TSP area – the cost matrix usually is considered 
as given. But if we take a real road network, the cost matrix is based on optimal route finding between all 
pairs of targets. All routes have to be computed beforehand. As for n targets, we have nn 2  routes; this 
can be a time-consuming task.  

In principle, we also could estimate the costs between targets. Such an approach is presented in [7]: we 
could e.g., use the line of sight distance and multiply it with a locality-dependent factor. But we easily can 
find counter-samples where such estimations completely fail – imaging geographically nearby targets on 
opposite river banks without a bridge. We strongly believe, the final result heavily depends on the exact 
cost matrix. This is the motivation to take the EMMA approach as it efficiently can compute the costs 
between all round-trip locations. 

Research on the TSP distinguishes the symmetric and asymmetric TSP. Most assume symmetric costs, 
i.e. costs(A, B)=costs(B, A) for all locations. This is obviously not true in real road networks. [17] pointed out 
that if we apply symmetric TSP approximations to the asymmetric road network scenario, this may lead 
to significantly different solutions. 

Looking deeper to the problem, real road networks lead to another problem usually ignored by TSP 
researchers: we have to consider the direction of arrival and departure. For non-one-way roads we usually 
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can approach a certain target from two directions. Dependent on the respective situation we can 
distinguish three cases (Fig. 10): 

 

 
Fig. 10. Cases for arrival and departure directions 

— It could be required to arrive in a certain direction and depart in the same direction (Fig. 10(a)). This 
could e.g. be if the actual point to visit can only be reached from one side of the road. 

— The target could be reached from both sides, but we could request to depart in the same direction (Fig. 
10(b)). 

— Some targets could also accept both arrival directions and U-turns to continue the round-trip (Fig. 
10(c)). 

 
Our additional goal was to assign one of these cases to each target. Note that some scenarios cannot avoid 
U-turns: consider a target in a dead-end. However: U-turns cause certain costs that have to be reflected in 
the cost matrix. 

Based on these considerations, the typical n x n cost matrix is not sufficient any more as we have to 

compute up to four costs per pair of targets. In worst case, we thus get a total of )(4 2 nn   routes. For, 

e.g., 50 targets, we have to compute 9800 routes. 

5.2 Approximating the round-trip 

The main contribution of this paper is the many-to-many routing approach and not the TSP ap-
proximation. But we had to consider some details in order to bring both together. As we have asymmetric 
costs and also respect arrival and departure directions, most TSP approximations were not suitable: most 
solutions assume symmetric costs and completely ignore directions. We eventually decided to choose a 
Simulated Annealing (SA) approach [3] as it was able to address all our requirements. The basic idea of 
SA:  

— We first have to define a space of states; for our problem the states are all possible round-trips. A 
fitness function indicates how ‘good’ a state is – for round-trips it is based on the total costs. 

— Each state is expected to have neighbor states (see below). Starting from a random state we take a 
sequence of random neighbors that increases the fitness value (hill climbing). 

— With a certain probability (that decreases over time), we choose a neighbor with lower fitness value. 
This ensures not to get trapped in a sub-optimum. 

 
To complete our description, we have to define what a neighbor state is. Note that SA leaves it to the 
actual realization to choose an appropriate notion of neighbors. Our result was outcome of numerous 
experiments. For a round-trip, neighbors are: 

— If we reverse a subsequence of targets. E.g. for the sequence ABCDEFGHA: neighbor states are 
ABCFEDGHA or AGFEDCBHA; 

— If we keep the sequence of targets, but change one arrival or departure direction. 
 
With a probability of 75% we choose a random neighbor of the first type and with 25% of the second type. 
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5.3 Results and evaluation 

For tests and evaluation we implemented the approach in our donavio navigation environment [16] that is 
part of the HomeRun framework [15]. donavio is a technically mature platform that contains all types of 
components related to navigation services: 

— Import, editing, optimizing, compiling and compressing of road network data; we especially are able to 
compute road networks solely from a geometric representation, such as of OpenStreetMap [2]; 

— Functions to model different means of transportation; 

— Data structures with indexing technologies for speed and space optimization; 

— Navigation algorithms with speed-up techniques (such as ALT); 

— Support for offline navigation on mobile platforms [14]; 

— Generation of driving commands (such as ‘at next crossing turn left’); 
— Route display on maps. 
 
As we developed the donavio environment ourselves, we are able to integrate and test arbitrary ex-
tensions and modifications at any part of the processing chain. We fully implemented the EMMA 
approach as well as the TSP approximation in our donavio navigation environment. From our geodata we 
take the road network of Germany with 12.3 million links, 10.8 million crossings and a total of 737 thou-
sand kilometers roads. From the plenty of tests we conducted, we present 6 representative scenarios:  

— TSP1: 9 targets in an area of 880 km x 550 km, 6 targets in different cities, 3 targets in one city;  

— TSP2: 34 targets in a single city in an area of 16 km x 11 km; a ‘packet delivery’ scenario; 

— TSP3: 15 cities in an area of 280 km x 230 km, each city contains 3 targets;  

— TSP4: another ‘packet delivery’ scenario; a single target in one city (the ‘main depot’), 29 targets in a 
second city (the ‘delivery points’), 160 km distance between the cities; 

— TSP5: 5 cities in an area of 160 km x 100 km, each city contains 10 or 11 targets with a total of 51 tar-
gets; 

— TSP6: 2 cities with a distance of 650 km, each city contains 20 targets. 
 
These scenarios reflect realistic tasks for, e.g. packet delivery or carrying business. Please note that 
random tests are not reasonable to evaluate EMMA, as this approach benefits from route similarities only 
found in real world scenarios.  

Figure 11 shows three of the results on a map. Table I provides an overview of the runtime statistics. 
Column I shows the number of multi-routing targets. A first observation: the results cover a huge variety 
of different numbers. This is a typical observation, whenever navigation algorithms are analyzed: results 
heavily depend on the respective scenarios. This makes it difficult to numeralize a benefit, as it can get 
larger or smaller, dependent on the actual situation. E.g. the effects of our approach in TSP1 and TSP2 are 
entirely different: in larger areas with only view targets (TSP1) the benefit is smaller, whereas in smaller 
areas with many targets (TSP2) we have a 100 times shorter execution time.  
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Fig. 11. Three round-trips 
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Table I Runtime Statistics to compute routes for the Traveling Salesman Problem 

Test 

I 
Number 
of TSP 
targets 

II 
Visited 

crossings 
EMMA 
(in mil.) 

III 
Visited 

crossings 
one-to-one-
A*  (in mil.) 

IV 
Relation 
of III/II 

V 
Recomp. 
f values
(in mil.) 

VI 
Recomp. time of 

f values/total 
time (in %) 

VII 
Total Time 

EMMA 
(in ms) 

VIII 
Total Time 
one-to-one 
A* (in ms) 

IX 
Relation 

of 
VIII/VII

TSP1 9 8.3 15.5 1.9 1.6 16.1 112.3 224.9 2.0
TSP2 34 0.3 1.3 5.2 0.1 14.2 0.3 30.6 103.4
TSP3 45 11.4 79.5 6.9 7.5 32.1 9.3 62.6 6.7
TSP4 30 1.3 9.4 7.1 0.4 15.5 1.8 39.2 21.8
TSP5 51 5.3 54.7 10.4 3.7 29.2 3.0 45.1 15.2
TSP6 40 11.5 151.4 13.2 11.5 46.2 14.8 107.1 7.2 

 
Due to the different results, formal analyzes to access the runtime complexity O(…) are difficult. As an im-
portant measure, we counted the number of visited crossings by EMMA (column II) compared to the one-
to-one-A* in a loop (column III). The reduction factor (column IV) indicates how many fewer crossings are 
visited due to g array recycling and route-oriented expansion. The results are encouraging: in our 
examples, in worst case we have only visited about half of the amount of crossings, in best case only 
1/13.2. This is a significant benefit. 

The drawback of the g array recycling was to recompute f values of all open crossings (see Section 4.11, 
especially Algorithm 2). We measured the amount of affected crossings (column V) and the relative 
processing time (column VI). Certain crossings can undergo an f value recomputation multiple times. In 
our table, we thus counted not only the crossings, but the actual number of recomputations. Not sur-
prisingly, the number of recomputed crossings thus is high; in TSP6 the number is as large as the total 
visited crossings. One could argue that the amount of time spent for f values recomputation is high. But 
this is a result of the dramatic reduction of the overall visited nodes. 

Column VII presents the mean time for each computed route for the Traveling Salesman Problem, 
measured on an Intel i7-4790 3.6 GHz. The execution times also heavily vary. As they depend on 
processor, memory and implementation details they only should give an impression. Column VIII shows 
the time for the same tests, if we used the naïve one-to-one-A* in a loop. Column IX shows the speed-up 
factor of our approach compared to the naïve approach. The comparison does not only take into account 
the relation of visited nodes, but also the constant set-up time for each route, e.g. to deal with the crossing 
link displacement. But also the time to sort the priority queue openList significantly differs between the 
tests. Thus, the speed-up indicated by column IX is usually different from the relation indicated by column 
IV. 

To sum up: even though, we have additional costs due to f value recomputation, the approach pays off 
and significantly speeds up the computation or routes required to solve the Traveling Salesman Problem 
by essential  factors. 

6. Conclusion 

In this paper we presented an optimization to A* to solve the many-to-many path planning problem called 
EMMA. In contrast to a one-to-one execution in a loop, we heavily benefit from similarities in the 
respective computation steps. For this, we introduce two techniques: g array recycling and route-oriented 
expansion. With these, we heavily reduce the number of visited crossings. Important: even though EMMA 
speeds up the computation time, it still provides correct, optimal routes as computed by one-to-one 
planning. Our approach can incorporate additional A* speed-up techniques such as ALT estimations to 
further improve computation time. 

We used our many-to-many path planning to solve the Traveling Salesman Problem in road networks. 
While most solutions assume a given cost matrix, we are now able to effectively compute it. Moreover, our 
approach solves the crossing link displacement problem and considers departure and arrival directions. 
We used a Simulated Annealing algorithm to actually compute round-trips from the cost matrix. 
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