
THE EXTENDED SPLIT INDEX TO EFFICIENTLY STORE
AND RETRIEVE SPATIAL DATA WITH STANDARD

DATABASES

Jörg Roth
Univ. of Applied Sciences Nuremberg

Kesslerplatz 12, 90489 Nuremberg, Germany
Joerg.Roth@Ohm-Hochschule.de

ABSTRACT

Geometric and geographic data have special demands on the database query mechanism. To store and retrieve huge
amounts of geo data, special spatial databases thus offer geometric column types and spatial indexes. Even though spatial
databases are getting more and more available, spatial operations are not standardized, thus applications cannot easily
switch between different databases. Moreover, spatial databases are not available for all platforms. Mobile device plat-
forms, e.g., usually only support standard databases without any spatial extensions. Our approach is thus based on rela-
tional standard databases and we introduce a spatial add-on that translates geometric queries to standard SQL. It provides
a new spatial index, the Extended Split Index, which is optimized for the add-on. It especially avoids any index reorgani-
zation, makes use of one-dimensional non-spatial indexes available in SQL databases and heavily reduces the number of
candidates that have to undergo further geometric checks. We demonstrate the strength of our approach with a perform-
ance evaluation based on more than 200 000 geo objects.

KEYWORDS

Spatial database, spatial index, geo data

1. INTRODUCTION

Spatial databases are used to store huge amounts of geographic or geometric data. Besides typical tasks of
databases they support geometric data types and operations. Geometric objects such as polygons can in prin-
ciple be stored in traditional table columns, but then typical queries (e.g. 'find polygons that enclose a spe-
cific point' or 'find polygons that overlap with a given other polygon') would be very difficult to execute. In
particular, standard index columns fail to optimize geometric queries. As a solution, spatial databases provide
special spatial indexes that are optimized to speed up geometric queries.

Spatial operations are usually integrated inside a database management system. To deal with geometric
objects both as atomic attributes (i.e. column values) as well as structured objects, geometries are modeled
deeply inside the database engine. In some cases however, the operation of spatial databases is not possible.
E.g., small computers or mobile end-user devices only support relational standard databases without any spa-
tial data types. A further issue related to spatial databases is currently the lack of standardized interfaces:
whereas standard SQL queries are standardized, every spatial database has its own syntax to model geome-
tries and to formulate spatial queries. Moreover, the set of geometric operations is different between the spa-
tial databases. Thus, an application developer has to decide very early which spatial database to use and can-
not easily switch later.

Our approach goes into another direction: we provide a geospatial add-on based on a non-spatial rela-
tional database. The add-on translates geometric queries to standard SQL. As the add-on does not have any
internal access to index structures, excessive index reorganizations are inappropriate. Thus we provide a new
spatial index called the Extended Split Index that is optimized for our intended usage scenario.

2. RELATED WORK

Typical spatial databases are Oracle Spatial (Murray, 2008), PostgreSQL/PostGIS (Neufeld, 2009) or
MySQL Spatial Extensions (Sun, 2009). The interface to the application developer is SQL, but to formulate
spatial queries different SQL extensions are used. The Open Geospatial Consortium (OGC) proposed some
standards to access spatial extensions. The so-called Simple Features provide a framework for geometries
that include classes such as the LineString or MultiPolygon (Herring, 2005). A further document maps geo-
metric classes to SQL expressions (Herring, 2006). A similar approach is ISO SQL/MM Spatial that also is
based on the OGC Simple Features (Stolze, 2003).

Existing spatial databases, however, are different how they offer geometric properties; especially the
interfaces to formulate geometric attributes differ. E.g., PostGIS uses the function AddGeometryColumn
to create a geometric attribute; values are defined by GeometryFromText(). In MySQL Spatial Exten-
sions we have the column type GEOMETRY that is defined by CREATE TABLE; values are defined by
GeomFromText(). Oracle Spatial uses the column type SDO_GEOMETRY that is assigned by SDO_GEO-
METRY(…SDO_ORDINATE_ARRAY()). Further differences also affect the interface, thus it is difficult the
change the underlying spatial database after an application or service once has been developed.

Besides the storage of geometries, the main contribution of a spatial database is the fast processing of
geometric queries with the help of a spatial index. Common spatial indexes are based on trees such as Quad-
trees (Finkel and Bentley, 1974) or variations of R-Trees (Guttman, 1984). They first approximate the shape
of an object by a bounding box that is inserted into a tree structure. A query goes down through the tree until
an appropriate tree node is found. The corresponding bounding box then can be used to identify a (hopefully
small) set of candidates that have to undergo further geometric checks.

Usually, a single spatial query leads to multiple tree node queries. Moreover, modifications or insertions
of geometries may result in excessive tree reorganizations. This is not suitable for an add-on that has to con-
sider the index as a usual table column without any internal access and which has to retrieve and modify in-
dex values through the SQL interface. In this paper we thus suggest a new spatial index that only changes the
index value of the respective data row within a single update.

3. THE ADD-ON APPROACH

To support geometric queries on standard SQL databases we developed a small add-on (80 kB binary) that is
linked to the application or service. Currently, we support applications developed in Java, but other pro-
gramming languages are conceivable. Besides the formulation of queries, the add-on provides an automatic
object mapping, thus the application developer can easily access geometries by objects inside the applica-
tion's object space. We use the Java Topology Suite JTS (Aquino, 2003) as geometric engine – it fully sup-
ports the OGC Simple Features.

3.1 The Extended Split Index

Our new spatial index, called the Extended Split Index has the following properties:
 Only index values of modified geometries are changed for every conceivable modification.
 Every geometric query is executed by a single standard SQL query.
 The spatial index is mapped to a single standard SQL index column (i.e. a non-spatial index).
 The set of candidates retrieved by the spatial index is sufficiently small.

Our index covers two dimensional finite areas (x0… xmax, y0…ymax). Three dimensions are conceivable, but
not discussed in this paper. To, e.g., store world-wide geographic data, we would use latitude/longitude coor-
dinates.

Fig. 1. Mapping of numbers to tiles

Fig. 1 illustrates the concept: indexed planes cover the geometric area with different resolutions. Planes are
divided into tiles using either horizontal or vertical separator lines. The number of tiles per plane is always a
power of 2.

The basic idea is to uniquely map integer numbers z to tiles of the covered area. This mapping has some
similarities to the z-curve (Tropf and Herzog, 1981), but where the z-curve maps a single geometry to a sin-
gle tile, we map a single geometry to all intersecting tiles of different planes.

For a tile number z the corresponding plane i has an index log2(z) (here,  denotes rounding off); the
lower left tile of this plane has the index number z0=2i. To get the tile coordinates (indx(z, i), indy(z, i)) we
need an auxiliary function interleave: for a number n with binary representation (nmnm-1 …n3n2n1n0)2 we get
interleave0(n)=(nm-1…n2n0)2 and interleave1(n)=(nm …n3n1)2 i.e. it returns even or odd bits of a number. The
coordinates then are

 i
ix zinterleaveizind 2),(2mod  ,  i

iy zinterleaveizind 2),(2mod)1(  (1)

where the tiles have a size

 2/2
)(

i
d

d
x

irx  ,   2/12
)(

i
d

d
y

iry (2)

The rectangle related to a tile is

 )(),(),(),(00 iryizindyirxizindx dydx 
    )(1),(),(1),(00 iryizindyiryizindx dydx  (3)

An important advantage: for a given tile index z we get all bigger tiles that enclose this tile by the simple set

       1,...8,4,2 zzz (4)

On the other hand, smaller tiles inside a given tile z have the numbers

      ...78,...8 34,...4 12 ,2  zzzzzz (5)

These sets are extremely simple to compute and it can be expressed by one-dimensional interval conditions
inside a single SQL query.

For our intended usage, we also require the inverse mapping. For a coordinate (px, py) of (x0…xmax,
y0…ymax) we get the tile index z on plane i as follows:

     2/00 2
)()(

2),,(i

d

y

d

xi
yx iry

yp

irx

xp
ippz 







 








 
 (6)

For a given geometry, we want to compute the smallest tile that fully encloses this geometry. If we formulate
a query, we compute embedded and surrounded tiles for the query geometry (equations 4, 5) and retrieve the
set of candidates with the help of a one-dimensional index of z values.

Because a point can be embedded into arbitrarily small tiles, we have to specify a maximum plane num-
ber imax that depends on the supported integer type. The relation between imax and the maximum tile index zmax
is

   11log max2max  zi (7)

For the data type INT8, we, e.g., get imax=62 and 2147483648 tiles in x-direction. Covering the Earth's sur-
face, the maximum tile size then is 1.86 cm. This is a sufficient resolution for usual location-based applica-
tions.

For non-point geometries we map the lower-left and upper-right corners (px0, py0, pxmax, pymax) of the
bounding box to their tile indexes on plane imax. If these index numbers are different (which is the probable
case), we compute the largest common tile index zrect as follows

 max}maxmax00

maxmax00

,...0{,),,,(),,(max

),,,(

ijijppzippzzz

ppppz

yxyxijij

yxyxrect




 (8)

Even though this formula looks complex, we can compute zrect with the help of simple binary shifts.
After these preparations we now can apply our spatial index as follows:

 The add-on automatically creates an integer column for every geometry column. It is marked as index
column inside the standard database.

 For geometries stored in the database, z values are computed according to equations 6 and 8 and stored
inside the index column.

 The geometry itself is serialized to a column that is able to store binary values (usually of type BLOB).
 If we change a geometry, the z value has to be adapted. If we remove a geometry, the z value is removed

as well, as it is stored in the same data row. No further computations or data changes are required.
 For queries that contain geometrical conditions, the candidate set is retrieved according to equations 4

and 5. For this, a query SQL string is extended by further conditions (see below). This extension is
automatically performed by the add-on.

 As the set of candidates is a superset of real hits, the candidates undergo further geometric checks out-
side the database. These checks are carried out automatically by the add-on.

To give an example: We want to find all cities in Germany with less than 100 000 inhabitants. The non-geo-
metric part of the query is

SELECT * FROM CITIES WHERE INHABITANTS<100000

Let's assume the tile number of the border of Germany is 55; we further define zmax=511, i.e. imax=8. Let IND
be the name of the index column that holds the z values. The resulting SQL query then is

SELECT * FROM CITIES WHERE INHABITANTS<100000 AND
 (IND=55 OR IND=27 OR IND=13 OR
 IND=6 OR IND=3 OR IND=1
 OR IND BETWEEN 110 AND 117
 OR IND BETWEEN 220 AND 227
 OR IND BETWEEN 440 AND 447)

Every SQL query is confined by imax+1 index conditions. For this, we have to ensure that the maximum SQL
string size is not exceeded. This is not a problem for typical SQL databases.

3.2 Further Reduction of Candidates

Until now we still have a problem: even small geometries may have a small tile index number, if they inter-
sect separator lines with low plane indexes. E.g., all objects intersecting the equator have z=1. Such objects
lead to a constant amount of candidates for all queries as tiles with z=1 are always inside the candidate set
and have to undergo the exact geometric check (equation 4).

Fig. 2. Average plane number (top left), shifted index idea (top right and bottom)

To analyze this effect, we performed a simulation based on real geo data. Typical sizes of geo objects follow
the power law, i.e. we have many small objects and only few large objects (Roth, 2005). Fig. 2 (top left)
illustrates the results: the diagram maps a relative object's positions (i.e. its center) in one dimension (0-
100%) to the average plane index (imax=5). Not surprisingly, objects near the first separator (50%) have a low
plane number on average. Separators of further planes (25%, 75%, 12.5%, 37.5%, 62.5% etc.) lead to further
index degradations.

The solution to this problem is illustrated in fig. 2 (top right): we use two shifted indexes, each of it com-
putes its own z number according to equations 6 and 8. The specific offset ensures that not both indexes si-
multaneously generate low z numbers. For queries, we create index conditions for both indexes, combined by
AND, thus the higher z number has the largest impact on the candidate set.

To find an appropriate offset is not a trivial task:
 If one index produces a low z number, the other index should produce a high one and vice versa.
 Objects that are larger than the offset may intersect with two shifted separators, thus the offset should be

larger than the typical object size.
 If in turn, the offset is too large, the joint area of both indexes is small.

Looking at fig. 2 (top left) we can identify some candidates for appropriate offsets. Positions (1) and (2) are
e.g. local maxima and nearby the 50% separator, thus the shifted index may have its 50% separator on these
positions. If the one index generates a low number for positions nearby 50%, the other index generates an
index number near to the maximum (fig. 2 bottom).

We can compute the relative position (1) as follows:

3

1

2

1
...

8

1

4

1

2

1
1max


i
 i.e. the offset is

6

1

3

1

2

1
 (9)

For the relative position (2) we get

12

5

2

1
...

32

1

16

1

8

1

4

1

2

1
1max


i
 i.e. the offset is

12

1

12

5

2

1
 (10)

Fig. 3 shows average plane numbers of shifted indexes for different offset values. For offsets 1/6 and 1/12 we
nearly got constant plane values of 4 (generally imax-1), thus these offsets are appropriate values. Fig. 3 (right)
illustrates the problem, if the offset is too small: many objects intersect both corresponding shifted separators,
thus the overall behavior tends to the behavior of a single index (fig. 2 top left).

Fig. 3. Average plane number with shifted indexes

Using an offset of 1/6 the covered area is reduced by 31%; for 1/12 it is reduced by 16%. In order to still
cover 100% of the original area, we have to decrease the resolution. Using the data type INT8, the remaining
resolution is still sufficient.

3.3 Query Creation, Interoperability

The execution of the spatial index is fully hidden from the application developer. To allow the add-on to in-
tegrate the additional SQL conditions into a query, the developer has to use a special query API provided by
the add-on. As an example: we again want to find all cities in Germany with less than 100 000 inhabitants.
The application creates the query as follows:

select=dbman.getSelectStatement("CITIES"); // TABLE CITIES
condition=select.getWhere().createLT(); // CONDITION <
condition.addPart(select. // COL INHABITANTS
 getSelectTableReference().newColumnReference("INHABITANTS"));
condition.addPart(100000); // VALUE 100000
result=dbman.search(SearchType.WITHIN,GermanBorder,
 select); // INSIDE GERMANY

The additional spatial conditions are integrated with the help of the last call. Here, we assume that the vari-
able GermanBorder contains the geometry of the German border.

Our add-on does not make any important demands on the underlying SQL database. Even though differ-
ent SQL databases should in principle support the same standards, we identified some small differences, e.g.:
 The column type to store geometries usually is BLOB, but also ByteA (PostgreSQL), Binary (MS

SQL Server) or LongVarBinary (HSQLSDB) are used. If a database does not support any binary
type, we create a textual representation of a geometry stored in a VARCHAR column.

 The column for z values usually is INT8, but Oracle requires INTEGER.
 The connection strings (with login, password etc) differ between databases.

In order to provide a common interface to the add-on, we defined a wrapper that shields these small differ-
ences from the add-on. We implemented wrappers for PostgreSQL, MySQL, Oracle, Microsoft SQL-Server,
SQLite and HSQLDB. Further wrappers can easily be implemented. The definition of a wrapper typically
does not exceed 200 lines of code.

3.4 Performance Considerations

To evaluate the approach, we executed a number of performance measurements. They should justify the
shifted index approach and demonstrate the performance for real scenarios.

To measure real systems means not only to measure the add-on but also the hardware, file system and
database. In addition, the respective exact shapes of geo objects and query geometries highly affect the re-
sults. However, the following figures indicate a trend. We used a desktop computer with 2.49 GHz CPU and
3 GB RAM running Windows XP and a PostgreSQL database version 8.3. We imported an amount of
226 497 geo objects of the file 'Bavaria' from OpenStreetMap (OpenStreetMap, 2009). The add-on needed
2.4 ms per geo object to create an object entry in the database table including the index value.

Fig. 4. Number of geo objects mapped to a certain plane

The first evaluation should identify the amount of objects that reside at a specific plane, both for a single in-
dex as well as for the shifted indexes (offset 1/6). For the latter we indicate the maximum plane number of
both indexes. Fig. 4 shows the results. The average plane number is 32.8 (single index) and 34.7 (shifted in-
dexes). This indicates a great benefit of the shifted indexes. In particular, the shifted indexes do not produce
any low index numbers.

Further measurements indicate the actual runtimes (table 1). We execute purely geometric queries, i.e. the
set of candidates was not reduced by non-geometric conditions. That is the common case, but would dilute
our measurements. We measured the number of hits, the number of candidates, the time for database execu-
tion and the time for the geometric check by the geometry engine.

Compared to the single index, the shifted indexes significantly reduce the number of candidates. The time
to check the candidate set is low compared to the database time. In summary, the Extended Split Index is an
efficient approach with low costs for insertions. The query time is appropriate for real applications.

Table 1: Runtimes for different queries

 Single Index Shifted Indexes
Q

ue
ry

T

yp
e

Q
ue

ry

G
eo

m
et

ry

H
it

s

C
an

d
id

at
es

D
at

ab
as

e
T

im
e

[m
s]

G
eo

m
et

ri
c

C

h
ec

k
 [

m
s]

C
an

d
id

at
es

D
at

ab
as

e
T

im
e

[m
s]

G
eo

m
et

ri
c

C

h
ec

k
 [

m
s]

CONTAINS POINT(49.4574 11.0827) 2 1410 781 0.219 89 46 0.011
CONTAINS POINT(49.8000 11.7000) 0 706 421 0.000 22 12 0.000
OVERLAPS POLYGON(48.9574 11.0827…) 2 831 375 0.235 21 11 0.006
CONTAINS POLYGON(49.4500 12.9000…) 0 590 313 0.000 71 30 0.000
WITHIN POLYGON(49.4520 11.0927…) 33 3178 1109 0.047 272 104 0.006
WITHIN POLYGON(49.4574 11.0827…) 345 3178 1188 0.078 2859 969 0.055

4. CONCLUSIONS AND FUTURE WORK

The presented spatial add-on allows the storage of huge amounts of geometric data and supports spatial que-
ries. It only requires a standard SQL database and thus may be executed even on special platforms, e.g., mo-
bile devices that are not able to run spatial databases. The add-on introduced the new Extended Split Index
which only causes minimal costs for geometry updates and makes use of one-dimensional index columns
supported by standard databases. Geometry queries are mapped to standard SQL queries.

In the current implementation, queries cannot express conditions on derived quantities of geometries such
as the size of the surface area or shape diameter. In the future we want to integrate such quantities into que-
ries. In principle, these quantities could be computed from geometries and stored in separate columns, but
this would require additional column updates for each geometry change.

In the current implementation, we compare stored geometries with a given query geometry. As a further
goal we want to introduce more complex query types known from traditional databases. The greatest chal-
lenge will be the spatial join that relates two geometric columns in a single query.

REFERENCES

Aquino J., 2003. JTS Topology Suite. Technical Specifications, Vivid Solutions
Finkel R., Bentley J.L., 1974. Quad Trees: A Data Structure for Retrieval on Composite Keys. Acta Informatica 4 (1):

1974, 1–9
Guttman A., 1984. R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. of the 1984 ACM SIGMOD Inter-

national Conference on Management of Data, Boston, Massachusetts, June 1984, 47-57
Herring J. (ed.), 2005. OpenGIS® Implementation Specification for Geographic information - Simple feature access -

Part 1: Common architecture, OGC
Herring J. (ed.), 2006. OpenGIS Implementation Specification for Geographic information - Simple feature access - Part

2: SQL option, OGC
Murray C., 2008. Oracle Spatial Developer's Guide. Oracle, Aug. 2008
Neufeld K., 2009. PostGIS Manual
OpenStreetMap, 2009 excerpts for Europe, http://download.geofabrik.de/osm/
Roth J., 2005 A Decentralized Location Service Providing Semantic Locations. Informatik Report 323, University of

Hagen, Jan. 2005
Stolze K., 2003. SQL/MM Spatial: The Standard to Manage Spatial Data in Relational Database Systems, BTW 2003,

Leipzig, Feb 2003
Sun, 2009. MySQL 5.0 Reference Manual. Sun Microsystems
Tropf H., Herzog H., 1981. Multidimensional Range Search in Dynamically Balanced Trees. Applied Informatics,

2/1981, Vieweg, Germany, 71–77

