
Efficient Computation of Bypass Areas

Jörg Roth

Abstract Route planning in road networks is a basic operation in the area of
location-based services. Very often, the knowledge of the optimal route is not the
only important information for a driver. Complex services could also present points
of interest (e.g. hotels or gas stations) nearby the optimal route as stop-over. Here,
‘nearby’ means: the bypass route from a start to target that passes that point does
not exceed certain costs. In this paper, we present an efficient approach to compute
all bypasses that are within a given cost limit. We may additionally request only
locally optimal bypasses, e.g., that reach an intermediate point without driving
U-turns. The set of all bypasses called bypass area can be used for further queries,
in e.g. geo databases to find nearby points of interest for a certain application or
service. Our approach is fully implemented and evaluated and computes the
respective bypass areas very runtime-efficient, whereas it re-uses similar structures
as for optimal route planning.

Keywords Route planning ⋅ A* ⋅ Alternative routes ⋅ Bypasses

1 Introduction

Route planning on road networks is a well understood problem. Network services
or on-board applications are able to compute a route from position to position that is
optimal according to given demands. Resulting routes minimize ‘costs’ such as
time, distance, fuel consumptions or road charges.

For a certain navigation task, the optimal route may not be the only useful
information. A driver could refuse the optimal route due to several reasons. From
former knowledge, the driver may know the given route does not meet her or his

J. Roth (✉)
Department of Computer Science,
Nuremberg Institute of Technology, Nuremberg, Germany
e-mail: Joerg.Roth@th-nuernberg.de

© Springer International Publishing AG 2017
G. Gartner and H. Huang (eds.), Progress in Location-Based
Services 2016, Lecture Notes in Geoinformation and Cartography,
DOI 10.1007/978-3-319-47289-8_10

193

demands on an optimal route, e.g., there is a certain probability for a traffic jam. Or,
the driver wants to drive through another region to view a certain sight.

On the other hand, the route planning process should directly incorporate a
certain intermediate point. e.g., we want to drive to a target, but on the route we
want to stop at an arbitrary gas station. Driving to downtown we may ask: how to
drive, if we want to pass a post box, bakery and supermarket? Important: the actual
intermediate positions are variable (any post box or any bakery will do and also any
ordering of stops). Thus, we cannot simply split a route and execute individual
point-to-point planning tasks to known points. Thus, we have to compute all routes
from a start to a target and check, whether they touch the respective points of
interest.

The following approach to solve this problem may be part of a larger navigation
service or route planning application. We present an approach that efficiently
computes all respective bypasses. The approach can be configured to reflect the
user’s or application’s demands. In particular we express the quality of a bypass
with the help of a cost limit.

2 Related Work

Route planning algorithms usually are based on Dijkstra’s shortest path approach
(Dijkstra 1959) or the A* algorithm (Hart et al. 1968). A* takes into account
additional knowledge about road networks, modeled as future path cost estimation.
With this, the computation is significantly faster while the optimality of results is
kept. For large road networks, we usually combine the benefits of A* with addi-
tional techniques to reduce the runtime. They can be distinguished in approaches
that do not change the optimal result (i.e. only speed up the computation) and those
that may lead to sub-optimal results. An approach of the first type is to provide
precise future path cost estimations, e.g., ALT (A* search, landmarks, and triangle
inequality, Goldberg and Harrelson 2005). An approach of the second type is to
consider only fast roads (e.g. highways), in the middle of the route, i.e. when we
exceed a certain distance from start or target (Geisberger et al. 2008).

Bypasses or alternative routes are non-optimal routes. Usually, there is a single
optimal route for a certain cost measure (if we ignore the unlike case of multiple
identical minimal costs). In contrast, the number of routes with non-optimal costs is
unlimited. In order to limit the set of reasonable bypasses, we thus have to introduce
additional conditions on bypasses.

An approach is to order all possible routes by their increasing costs and take the
first k routes. The so-called k-shortest path routing has a long tradition (Hoffman
and Pavley 1959; Bellman and Kalaba 1960); several subsequent approaches speed
up the execution (Yen 1971; Eppstein 1994). The problem turned out to be harder,
if we want to avoid routes with loops—but this is usually a condition for a rea-
sonable bypass.

194 J. Roth

Abraham et al. (2010) pointed out a problem of the k-shortest path approach:
reasonable alternatives are probably not among the first thousands shortest paths.
They suggest an additional condition for alternative routes: local optimality. This
means, every subroute up to a certain length must be an optimal route. This reflects
usual driving behavior: even though a driver might not use an optimal total route
according to a given cost function, short parts of a route usually are optimal. Luxen
and Schieferdecker (2012) combined the idea of locally optimal alternatives with an
optimized road network that considers faster roads in the middle of a route. Para-
skevopoulos and Zaroliagis (2013) introduced additional filtering methods to
remove unwanted alternatives.

The following approach is heavily based on former research on route planning
algorithms in den HomeRun environment (Roth 2013). The primary goal of former
research was to provide algorithms beyond the typical task of optimal route plan-
ning. All of the following approaches are based on A* but reused the underlying
structures in a novel manner:

• For a set of n starts and m targets: find all n ⋅m optimal routes for any combi-
nation of start and target. This function is called multirouting. We presented an
approach to provide multirouting in a single step that is far more efficient than
executing n ⋅m single route planning (Roth 2016).

• Supervising a real driven route up to a certain point: what is the area of possible
targets, if we assume locally optimal driving? This is somehow the opposite
question of route planning as we want to predict a locally optimal route from a
partly supervised route. This function is called target prediction—we provide an
efficient solution for it in (Roth 2014).

• Given a set of measured positions: what is the most probable route that
approximates all positions—this is an extended version of the so-called map
matching problem known from navigation systems. But in contrast to existing
approaches, we consider all possible routes and take the one with the highest
probability (Roth 2016b).

Based on the experience with unusual navigation questions, we wanted to solve
the bypass problem. Even though strongly related to alternative path computation
as described above, we can state certain differences. First, we strongly base on A*
and thus can incorporate useful speed-up techniques, foremost the estimation based
on ALT. Second, we do not limit the set of bypasses (e.g. only the shortest k) but
return all. This allows an application or service to formulate any condition on its
own and is not limited to any concept of alternative routes modeled by the algo-
rithm. Even though ‘all’ instead of k routes seems to cause a high overhead, we
present a structure that represents these routes, meanwhile it enables an efficient
computation.

Efficient Computation of Bypass Areas 195

3 Computing Bypass Areas

3.1 Problem Statement

The concept of bypasses requires the knowledge of the optimal route that is
implicitly defined by a start, target and cost function (e.g. driving time). We can
formulate the bypass problem as follows:

What are all bypasses that do not exceed the minimal costs from start to target by a given
factor?

From these bypasses we want to know their paths, but also all passed positions
(i.e. possible intermediate targets). Inevitable for any approach is a road graph that
contains all crossings and connections between crossings. The latter specify road
characteristics to compute costs, e.g. road type and speed limit.

More formally: for each crossing qi we know its directly connected crossings qj
and the driving costs c(qi, qj) to get there. We call a connection between crossings
qi, qj a link. Link costs c(qi, qj) can be any positive number. In reality c(qi, qj)≠ c(qj,
qi) for many links due to, e.g., different speed limits or one-way roads.

The optimal route is a sequence of crossings (start, qi1, qi2, …, target) that
minimizes the sum of link costs. We call the minimal costs between two (not
necessarily connected) crossings c*; in particular, the costs for our optimal route are
c*(start, target).

3.2 Computing Optimal Paths

In order to present our bypass approach, we first describe A* that computes optimal
single routes from a crossing to a crossing. In order to execute route planning in a
target-oriented manner, A* requires a future path cost estimation function h(qi,
target)≤ c*(qi, target) that provides a lower bound of costs for the route termina-
tion. We request h to be monotone, i.e. for two connected crossings qi, qj we get

hðqi, targetÞ− hðqj, targetÞ
�� ��≤ cðqi, qjÞ. ð1Þ

Important: also for bad estimations h, A* always produces optimal results. But
the more h reaches the actual costs, the better A* performs, because it only deals
with fewer unwanted crossings. Algorithm 1 presents the original A* approach as
known from the literature.

196 J. Roth

Some remarks:

• We assign one of three states to each crossing: not_visited, open (g not finally
computed), closed (optimal route from start discovered). The section ‘expand
crossing’ in the loop means: take an open crossing and check all its neighbors.

• g[qi] contains the currently assumed costs from start to crossing qi. If qi is
closed, g[qi] contains the minimal costs from start to qi. If qi is open, g[qi] may
be still larger than the minimal costs.

• f[qi] contains the currently estimated total costs from start to target, if a route
goes through qi.

• To efficiently get the open crossing with minimal f, we additionally need an
openList that internally keeps the list sorted whenever an open crossing is added.

• For closed crossings qi, the link (backLink[qi], qi) is the last link of the optimal
route from start to qi.

• Once we polled target from the openList, the optimal route is discovered. We
then can easily collect the optimal route from start, following the backLink
entries.

Even though the primary computation result is the backLink array, we also
consider the g array as important output. For each crossing with state closed, the
g array provides the minimal costs to get there from the start, also, if the crossing is

Efficient Computation of Bypass Areas 197

not part of the optimal route. We take advantage of this property in our approach
(see next section).

A last important property of f that need in our approach: if we check the values of
f[qi] in the do-loop, f[qi] cannot get smaller for a new iteration. In other words: if we
expand a node qi, none if its non-closed neighbors qj can receive a smaller f-value.
This is because

f ½qi�≤ f ½qj�⇔g½qi�+ hðqi, targetÞ≤ g½qj�+ h½qj, target�
⇔ hðqi, targetÞ≤ cðqi, qjÞ+ hðqj, targetÞ⇔ðqi, targetÞ− hðqj, targetÞ≤ cðqi, qjÞ

ð2Þ

which is true because h is monotone (formula (1)).

3.3 Bypass Areas—Basic Considerations

Once we are able to compute an optimal route between two crossings, we can think
about alternative routes—our bypasses. Let opt = c*(start, target) denote the costs
for the optimal route from start to target and v≥ 1 the extension factor. We are
looking for all routes from start to target with costs of not more than v ⋅ opt. As we
are looking for the entire bypass area, we are actually looking for all crossings that
are part of all such routes.

Another view to the problem (Fig. 1a): an intermediate crossing I of the network
is part of the required bypass area, if

c*ðstart, IÞ+ c*ðI, targetÞ≤ v ⋅ opt. ð3Þ

Based on this consideration, we are able to provide a definition of a bypass area B:

Bðstart, target, vÞ= fIjc*ðstart, IÞ+ c*ðI, targetÞ≤ v ⋅ c*ðstart, targetÞg. ð4Þ

Even though easy to formulate, a real implementation is not obvious. A naïve
computation of B would iterate through all possible crossings of the road network
with e.g. some million crossings. As the check, whether I belongs to B requires to
compute c* (and thus to execute A*) two times, this approach would require an
unacceptable long computation. We thus present a solution that discovers all I more
efficiently in the next section.

A further issue: even though the respective routes start→ I→ target do not
exceed the given cost limit, they sometimes do not meet the drivers expectation of
an appropriate alternative route (Fig. 1b). The problem: the route can be split in two
optimal subroutes, however the total route may lose optimality in the range of
I. This contradicts the local optimality as described in Sect. 2. The example in
Fig. 1b is a worst case of a not locally optimal route, as the subroutes to and from
I contain reverse links and the driver has to U-turn at I.

198 J. Roth

We thus introduce a second type of bypass area BL that only contains inter-
mediate crossings of routes with local optimality. It depends on the application
scenario and user’s expectation, whether local optimality is required (BL) or not (B).
To control the degree of local optimality we define a parameter ℓ with the meaning:
all subroutes starting with a distance up to ℓ meters from I (on the route
start→ I) and terminate up to ℓ meters to I (on the route I→ target) go through
I. We can thus define BL as follows:

BLðstart, target, v,ℓÞ= fIjc*ðstart, IÞ+ c*ðI, targetÞ≤ v ⋅ c*ðstart, targetÞ
and the route is locally optimal according toℓg. ð5Þ

We provide an efficient approach to compute this set in the next section.
Figure 1c illustrates a last consideration: no matter whether we compute B or BL,

both sets only contain crossings. This is not sufficient if we want to compute an

(a)

(b)

start targetS

Intermediate
Point

T

I

optimal route
S→T

op
tim

al
rou

te

S→
I

optimal routeI→T

start targetT

I

optimal route
S→T

S

(c)

start targetTS

Fig. 1 Basic considerations about bypass area—a bypass through an intermediate point; b bypass
without local optimality; c all bypasses with geometric representation

Efficient Computation of Bypass Areas 199

area. As an example: if we want to detect appropriate hotels for a trip, we have to
compute a geometric area that covers all line string points of corresponding routes,
not only the crossings. Until now, all operations are based on the topological road
network. For further operation, we have to shift to the geometric model.

3.4 Bypass Areas Without Local Optimality

We first want to compute the simple bypass area B without local optimality. To
avoid iterating through all possible I, we take advantage of the way A* computes an
optimal path: from the start crossing it iteratively considers new crossings and
simultaneously maintains optimal routes from start to these crossings, even though
they will not be part of the final route. A* terminates when it considers target, as the
optimal route was found.

We modify the condition to terminate and we are able to create a field of all
crossings I that may be element of B. As this field computes paths from the start, we
call it start field. We additionally have to compute the second part of the route from
I to target, represented by a target field. As each field is only able to consider its
contribution to the condition in formula (4), each field contains more crossings than
required. However, the set of crossings to consider is by far smaller than all
crossings of the network.

Figure 2 illustrates the idea. The gray area presents all crossings that are open or
closed and their f-values do not exceed v ⋅ opt. All these crossings are reasonable
candidates as from

c*ðstart, qiÞ+ c*ðqi, targetÞ≤ v ⋅ opt ð6Þ

and

f ½qi�= g½qi�+ hðqi, targetÞ= c*ðstart, qiÞ+ hðqi, targetÞ≤ c*ðstart, qiÞ+ c*ðqi, targetÞ
ð7Þ

start targetTS

f ≤v⋅opt

Fig. 2 Idea of start field generation

200 J. Roth

(which is true, because h(qi, target)≤ c*(qi, target)) follows

f ½qi�≤ v ⋅ opt. ð8Þ

As the f-value of the next crossing in the open list cannot get smaller (see
formula (2)), we can stop when we poll a crossing with an f-value larger than v ⋅ opt.
As we do not know opt from the beginning, we first expand crossings as described
in Algorithm 1 until we polled target. Then, we visit more crossings as far as we get
the first crossing with f > v ⋅ opt. As a consequence, the field goes beyond the
target. This is reasonable, as those crossings are also candidates for I. Algorithm 2
sums up these considerations and shows how to compute the start field. To clearly
distinguish the respective structures, we now apply index s to all arrays of the start
field (e.g. gs).

In a second round, we have to generate a target field with indexes t (Algorithm
3). The approach is similar to Algorithm 2, but in order to apply the appropriate
driving direction, we have to incorporate these changes:

• The first open crossing is target.
• Whenever we expand a crossing qi, we check the distance from the neighbor qj,

i.e. c(qj, qi), not to the neighbor.
• The estimation is computed from start to the respective crossing.
• A sequence of backLink entries points to the target not to the start.

In addition, we can directly use the opt value of the start field. The target field
generation can benefit from a much better estimation h compared to the start field

Efficient Computation of Bypass Areas 201

(see (*) in Algorithm 3): we set h = gs[qj] whenever gs[qj]≥ 0. This does not
change the result, but significantly reduces the number of visited crossings for the
target field, thus improves the runtime. Using the gs for h does not only provide an
estimation, but returns the real costs, thus is the best considerable estimation.

The start and target field generation produce gs[qi] = c*(start, qi) for all qi with
states[qi] = closed and gt[qi] = c*(qi, target) for all qi with statet[qi] = closed. As a
consequence, we are now able to provide an efficient formula for B:

Bðstart, target, vÞ= fqijstates½qi�= statet½qi�= closed

and gs½qi�+ gt½qi�≤ v ⋅ optg ð9Þ

This approach is by far more efficient than an approach that computes two
optimal routes for every crossing in the network. The runtime of such a naïve
approach would be million times longer than the single route planning. In contrast,
our approach only causes a runtime of approx. 2 times more (see evaluation). Again
note that in this time the information of any bypass in the road network with the
required cost limit is discovered.

202 J. Roth

3.5 Bypass Areas with Local Optimality

In a second step, we may reduce B to BL that only considers locally optimal
bypasses. Again note that this operation is application-dependent. In particular, we
need to consider the user’s expectation of a bypass.

Obviously BL ⊆ B, thus we can iterate through all I∈B and check, if the
respective bypass is locally optimal. As the size of B can by large (e.g. some
hundred thousand crossings), we must avoid multiple executions of A* to check the
local optimality.

Some considerations: From a bypass through I, the parts start→ I and I→ target
are already optimal, thus also locally optimal. The crucial part of the route is thus
around I. If we require all subroutes up to length ℓ to be optimal, we can formulate
this condition as follows:

• for a crossing qi on the route start→ I with a distance to I not more than ℓ, I is
on the optimal route from qi→ target and

• for a crossing qi on the route I→ target with a distance to I not more than ℓ, I is
on the optimal route from start→ qi.

The distance ℓ can be expressed in any unit, e.g. meters for driving distances,
but also in the same unit as c*, e.g. the driving time. It depends on the application to
choose an appropriate measure and value.

To avoid the costly check with the help of A* for every I we make use of an
approach as illustrated in Fig. 3. We see the start and target field and a crossing
I∈B.

S

≤l Istart
field

target
field

T

I
≤l

backLinks[I]

backLinks
2[I]

backLinkt[I]

backLinkt
2[I]

Fig. 3 Checking local
optimality

Efficient Computation of Bypass Areas 203

Let backLinkn[qi] denote the n-times application of backLink, e.g., back-
Link2[qi] = backLink[backLink[qi]]. We further define backLink0[qi] = qi.

Obviously, backLinks
n[I]∈B for all n for which backLinks

n is defined. This is
because

c* start, backLinkns ½I�
� �

+ c* backLinkns ½I�, target
� �

≤ c*ðstart, IÞ+ c*ðI, targetÞ.
ð10Þ

As a consequence, backLinks
n[I] is also a closed crossing in the target field and its

backLinkt entry is defined.
On the subroute start→ I we are interested in all crossings backLinks

n[I] that do
not exceed distance ℓ to I. One of these crossings may violate the local optimality
condition, i.e. the optimal route to target may not go over I. We thus get local
optimality, if

backLinkt backLinkns ½I�
� �

= backLinkn− 1
s ½I�, ð11Þ

that can easily be checked for all n for which the corresponding entries are defined.
In a second round we also have to check subroute I→ target with corresponding
crossings backLinkt

n[I]:

backLinks backLinknt ½I�
� �

= backLinkn− 1
t ½I�. ð12Þ

In the example in Fig. 3, the corresponding backLink entries are all equal, i.e.
they all fulfil formulas (11) and (12). This proves the local optimality of the bypass
over I. Algorithm 4 shows the final approach to compute BL.

204 J. Roth

Some remarks about the runtime behavior: even though we have to loop over all
I∈B, the two inner loops are not time-critical. This is because they only iterate up
to a distance of ℓ. For an average link length, this is a constant, thus we have a
complexity of O(|B|) to compute BL.

3.6 Computing Geometric Areas, Samples

Once we computed our sets of bypass crossings B or BL respectively, we now have
to build structures that represent the bypass areas. We start with the definition of a
route that goes through a bypass crossing qi:

routeðqiÞ= ðstart, backLinkn− 1
s ½qi�, . . . , backLink1s ½qi�, qi,

backLink1t ½qi�, . . . , backLinkm− 1
t ½qi�, targetÞ

ð12Þ

whereas start = backLinks
n[qi] and target = backLinkt

m[qi]. Note that these routes
are ordered sequences of crossings. We further define

routesðB*Þ= frouteðqiÞjqi ∈B*g ð13Þ

for B* that either is B or BL. It represents all distinct routes through our bypass
crossings. To switch to a geometric view, we further define linestring(qi, qj) that
represents the line string geometry of link (qi, qj). The area is the union of distinct
line strings

areaðB*Þ= linestringðqi, qjÞjðqi, qjÞ is link in routesðB*Þ� � ð14Þ

again for B* that either is B or BL.
Figure 4 presents the output of area(BL), i.e. the geometry of routes(BL),

whereas BL is computed for a given start, target, v and ℓ. As BL only keeps
intermediate points with local optimal driving, routes(BL) only contains reasonable
alternative routes. Thus, we have an effective means to compute all alternative
routes to a target that do not exceed a certain cost limit (10 % in Fig. 4). This is a
useful service for all types of route planning. A navigation environment is able to
immediately present the optimal routes as well as all reasonable alternatives on a
map. The driver may decide to use a suboptimal route, e.g. to avoid a certain region
or road. The navigation application could also provide a slider that allows a user to
change v with immediate feedback of alternatives on the map.

We can also use the area function to query geo databases for interesting objects
near this area. Figure 5 shows an example. It illustrates a search for gas stations
near the route to the target, again with additional bypass costs that do not exceed
10 %. We use area(B) here, as we accept to drive to and from the gas station
without local optimality. Note that a real application would take into account the

Efficient Computation of Bypass Areas 205

Optimal Route

Alternative 1

Alternative 2

Alternative 3

Alternative 4

Start

Target

Fig. 4 Example computation of alternative routes (opt. route length = 35 km; v = 1.1;
ℓ = 5000 m)

Start

Target

Fig. 5 Search for gas stations with limited bypass costs (v = 1.1; no local optimality)

206 J. Roth

current tank content to query for gas stations. If we are able to travel up to 80 % of
the route with our tank content, we are only interested in gas stations that are 20–
30 % from the target. This fine-tuning of queries, however, depends on the
respective application.

We can additionally convert the set of line strings to a polygonal area using a
concave hull operation. A concave hull is a closed polygon that encloses a set of
given positions. In contrast to the convex hull, there is no unique concave hull—
usually a parameter α specifies how much the polygon geometrically adapts to the
given coordinates. We use an approach based on the Delaunay Triangulation
(Duckham et al. 2008). Figure 6 shows concave hulls with different values for v for
our example.

Note that a concave hull also covers intermediate positions that do not belong to
our bypass areas, as concave hulls do not create holes. On the other hand, all
intermediate points that hold the cost limit have to be inside a hull. As a result, the
concave hull region only provides an impression of reachable points, e.g. to be
painted on a map. It also can be used to query a superset of results with a much
simpler geometry than all line strings. This is reasonable as most spatial indexing
mechanisms are based on a simplified geometry (e.g., Roth 2009) and an exact
geometric check has to be performed in a second step.

Start

Target

v=1.05

v=1.07

v=1.10v=1.15v=1.25

v=1.10

v=1.15

v=1.25

Fig. 6 Concave hulls of all bypass routes (parameter v; no local optimality)

Efficient Computation of Bypass Areas 207

4 Evaluation

We evaluated our implementation of the bypass functions in the HomeRun envi-
ronment. The goal was to answer the following questions:

• For typical road networks and routes: what are the runtime costs to compute
bypass areas?

• Does the approach to speed up the target field generation pays off?
• How costly is the detection of bypasses that are locally optimal?
• Finally: what are typical values for v and ℓ and what are their impact on the

number of bypass crossings and alternative routes?

The following tests are based on the road network of Germany, imported from
Open Street Map to our HomeRun navigation structure. The network contains 12.8
million crossings and 33.7 million links. For execution time measurements we used
a PC with i7-4790 CPU, 3.6 GHz. We conducted 5 tests with different route lengths
and values for v and ℓ. For each of these tests we selected 2000 random routes.
Table 1 shows the results.

We first compared the time to compute the optimal route with the time to
compute all bypasses (rows 4 and 5). The bypass computation takes 1.9–2.3 more
computation time. This is a great result, as the bypass approach has to compute two
fields, whereas we only need a single field to compute the optimal route—only this
would require approx. twice the runtime of optimal routing. This proves that our
approach to compute all bypasses is efficient.

Table 1 Bypass execution statistics (average values for 2000 executions per test)

Test1 Test2 Test3 Test4 Test5

1: Distance start-target (km) 1–10 10–25 25–100 100–250 250–500
2: v 1.2 1.12 1.08 1.05 1.03
3: ℓ (km) 0.5 1.2 5 10 20
4: Execution time for opt. route (ms) 40 42 61 119 249
5: Bypasses execution time (ms) 77 83 134 282 587
6: Time to check local optimality (ms) 0.172 0.423 3.143 8.96 13.41
7: Visited crossings start field 4059 12 651 69 303 222 997 533 906

8: Visited crossings target field 1722 4127 21 013 66 633 145 651
9: Total bypass crossings 1425 3096 14 190 38 425 69 610
10: Ratio start field/bypass crossings 2.8 4.1 4.9 5.8 7.7
11: Ratio target field/bypass crossings 1.2 1.3 1.5 1.7 2.1
12: Bypass cross. with local optimality 306 516 1013 1471 1940
13: Alternative routes 18 17 16 12 6

208 J. Roth

Second, we checked, whether the speed up of the target field generation (marked
by (*) in Algorithm 3) really pays off. Comparing rows 7 and 8 (also 10 and 11) we
see the numbers of visited crossings of the target field are significantly lower than
the numbers in the start field.

Third: we proved that the approach to detect locally optimal bypasses (Algo-
rithm 4) is very efficient (row 6). The time compared to the total runtime can nearly
be ignored.

Finally, we got an impression of bypasses (row 9), bypasses with local opti-
mality (row 12) and alternative routes (row 13) in typical scenarios on real road
network. The number of real alternatives is considerably low in our tests (less than
20 alternatives). This small list of routes could, e.g., be painted on a single map with
different colors.

To sum up: the evaluation shows the effectiveness of the overall approach. It is
possible with a considerable small execution time to compute the set of bypasses
and, if required, to keep those with local optimality.

5 Conclusions

Our approach is an efficient solution for the bypass-problem: what are the positions
than can be reached with limited additional driving costs? In contrast to similar
questions (k-shortest paths, alternative routes), we are not limited to certain
bypasses, but directly compute all within the cost limit. This enables applications to
perform their own queries based on the bypass areas, such as: ‘On the way to my
target; which gas stations can be reached within 10 % additional driving costs?’
And also: ‘What are all alternative routes from start to target within 5 % more costs
than optimal?’.

This approach is heavily based on A* and its structures. In particular, the
approach benefits from the estimation function that does not affect the correct result
but significantly speeds up the computation. The overall runtime is comparable to
optimal path planning, thus a respective service could directly call the computation
of bypass areas, whereas the optimal route can be considered as special type of
bypass.

We fully implemented and evaluated our approach that is part of the donavio
navigation environment in the HomeRun project.

References

Abraham I., Delling D., Goldberg A. V., Werneck R. F. (2010): Alternative Routes in Road
Networks, in Proc. of the 9th Intern. Symposium on Experimental Algorithms (SEA ’10).

Bellman R. and Kalaba R. (1960): On kth best policies, Journal of the Society for Industrial and
Applied Mathematics, 582–588.

Efficient Computation of Bypass Areas 209

Dijkstra E. W. (1959): A note on two problems in connexion with graphs, Numerische
Mathematik. 1, 1959, 269–271.

Duckham M., Kulik L., Worboys M. and Galton A. (2008): Efficient generation of simple
polygons for characterizing the shape of a set of points in the plane, Journal Pattern
Recognition, Vol. 41, Issue 10, Oct. 2008, 3224–3236.

Eppstein D. (1994): Finding the k shortest paths, in Foundations of Computer Science, Proc of the
35th Annual Symposium on. IEEE, 154–165.

Geisberger R., Sanders P., Schultes D. and Delling D. (2008): Contraction Hierarchies: Faster and
Simpler Hierarchical Routing in Road Networks, WEA 2008, LNCS 5038, 319–333.

Goldberg A. V., Harrelson C. (2005): Computing the Shortest Path: A* Search Meets Graph
Theory, in Proc. 16th ACMSIAM, Symposium on Discrete Algorithms, pp. 156–165.

Hart P. E., Nilsson N. J. and Raphael B. (1968): A Formal Basis for the Heuristic Determination of
Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics SSC4 (2), 1968,
100–107.

Hoffman W. and Pavley R. (1959): A method for the solution of the n th best path problem,
Journal of the ACM (JACM), vol. 6, no. 4, 506–514.

Luxen D., Schieferdecker D. (2012): Candidate Sets for Alternative Routes in Road Networks, in
Proc. of the 11th Intern. Symposium on Experimental Algorithms (SEA ’12).

Paraskevopoulos A., Zaroliagis C. (2013): Improved Alternative Route Planning, 13th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS’13). 108–122.

Roth J. (2009): The Extended Split Index to Efficiently Store and Retrieve Spatial Data With
Standard Databases, IADIS International Conference Applied Computing 2009, Rome, Nov.
19–21, 2009, Vol. I, 85-92.

Roth J. (2013): Combining Symbolic and Spatial Exploratory Search – the Homerun Explorer,
Innovative Internet Computing Systems (I2CS), Hagen, June 19–21. 2013, VDI, Vol. 10,
No. 826, 94–108.

Roth J. (2014): Predicting Route Targets Based on Optimality Considerations, International
Conference on Innovations for Community Services (I4CS), Reims (France) June 4–6, 2014,
IEEE xplore, 61-68.

Roth J. (2016): Efficient Many-to-Many Path Planning and the Traveling Salesman Problem on
Road Networks, KES Journal: Innovation in Knowledge-Based and Intelligent Engineering
Systems, 20 (2016), IOS Press, 135–148.

Roth J. (2016b): The Offline Map Matching Problem and its Efficient Solution, International
Conference on Innovations for Community Services (I4CS), Vienna, under review.

Yen J. Y. (1971): Finding the k shortest loopless paths in a network, Management Science, vol. 17,
no. 11, 712–716.

210 J. Roth

	10 Efficient Computation of Bypass Areas
	Abstract
	1 Introduction
	2 Related Work
	3 Computing Bypass Areas
	3.1 Problem Statement
	3.2 Computing Optimal Paths
	3.3 Bypass Areas—Basic Considerations
	3.4 Bypass Areas Without Local Optimality
	3.5 Bypass Areas with Local Optimality
	3.6 Computing Geometric Areas, Samples

	4 Evaluation
	5 Conclusions
	References

