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Abstract. Many context- and location-aware applications request high accuracy 
and availability of positioning systems. In reality however, knowledge about the 
current position may be incomplete or inaccurate as a result of, e.g., limited 
coverage. Often, position data is thus merged from a set of systems, each 
contributing a piece of position knowledge. Traditional sensor fusion 
approaches such as Kalman or Particle filters have certain demands concerning 
the statistical distribution and relation between position and sensor output. 
Negated position statements ("I'm not at home"), cell-based information or 
external spatial data are difficult to incorporate into existing mechanisms. In 
this paper, we introduce a new approach to deal with different types of position 
data which typically appear in context- or location-aware application scenarios. 
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1   Introduction 

To detect context from the user's current location, position information ideally has a 
high precision and is constantly available. Many positioning systems, however, have a 
limited coverage and availability. E.g., GPS does not work indoors and often fails in 
city centres. Indoor positioning systems only cover some rooms or buildings. Systems 
with a higher coverage (e.g. based on mobile phone cells) are often inaccurate. In 
reality, we thus receive a number of incomplete pieces of position knowledge such as: 

• I currently receive WLAN cell ABC; 
• checking my IP address, I know, I'm not at home; 
• one minute ago, I received GPS position XY, and I have a maximum speed of 

5 km/h as pedestrian. 

We call such statements location predicates. We often still have uncertainty about the 
actual position, but we can at least mark some positions as probable. A location-
aware application could request the most probable positions(s) based on incomplete 
knowledge to detect the context. 

One research field that traditionally deals with different position information is 
robotics [1, 22]. Based on odometers, ultrasonic distance measurement and cameras, a 
mobile robot computes the most probable location (often indoors). Established 
approaches to compute a position from these sensors are Kalman or Particle filters. 
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Even though these approaches are widely used, they often cannot be applied to mobile 
user scenarios due to significant differences: First, potential positions cover the entire 
Earth's surface and not only rooms or buildings. Second, position data are more 
complex from the viewpoint of statistics; especially we have non-Gaussian distributed 
sensor values. Third, we have to access external spatial data such as road maps. These 
differences highly complicate the task of position inference. 

In this paper, we introduce a new mechanism that deals with these issues. As a first 
idea, every piece of position information is modelled by a standardized data structure 
that reflects the corresponding knowledge. Second, a mechanism processes this 
information and constructs a structure that represents the position probability for 
every location. Third, most probable positions (local maxima or centroids) are derived 
from these result structures. 

2   General Considerations and Related Work 

Any piece of information about the position such as 

• not to be at home, 
• a GPS receiver measured position XY, 
• to drive on a road or  
• to reside anywhere in the GSM cell ABC 

affect the probability to reside at a certain position. Actually, the current position is 
not a random variable in the traditional sense, as it is fix but unknown. We thus 
formulate the problem as follows: given a position; what is the probability to get the 
specific list of predicates? In the case of continuous random variables, the probability 
of any single discrete event is in fact 0. Thus, the probabilities of all positions are 
represented by a probability density function (pdf). Strongly related to a pdf f, there 
exists a cumulative distribution function (cdf) F with  

P(X ≤ x, Y ≤ y) = F(x, y) = ∫ ∫
∞− ∞−

x y

dbdabaf ),(  (1) 

for a position (x, y) and random variables X, Y. In principle, we could express the 
information about the location by a cdf. But as pdfs in contrast to cdfs have small 
values (or even zero) for improbable positions, approximations that precisely reflect 
the knowledge require far less memory. Most approaches to model position 
information by probabilities thus use pdfs. 

We first consider a fix point in time and further assume that we collect position 
information represented by a set of independent predicates zi. According to the 
equation of conditional probabilities (Bayes rule) we get  
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which describes the position density according to the new information. As f(zi) does 
not depend on x, we can consider the denominator as constant. Thus, we do not 
actually compute f(zi) and instead normalize the numerator to fulfil 
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Here, f(zi |x) describes the predicate's general character, e.g., the error probability of a 
GPS sensor. This distribution is predefined and does not change over time, thus can 
be precomputed for each predicate.  

If we had zero position knowledge (uninformative prior), but only rely on the given 
predicates, the equation simplifies to  

∏⋅= )|()..|( 1 xzfczzxf in  where c = 
∫∏ )|(

1

xzf i

 (4) 

To consider multiple predicates at a single point in time, we thus mainly need to 
multiply densities. 

To model motion over time, we have to consider a density that represents the 
position knowledge for position p at a time t1, say f(t1, p), and a second density that 
represents relative movement by pΔ, say g(t1, t2, pΔ). The resulting density at time t2 
can be computed using the convolution equation 

ΔΔΔ∫ −= dppttgpptfptf ),,(),(),( 2112  (5) 

Note that the integral is already one, thus no normalization is required. 
Equations (4) and (5) form the basic toolset for any probability computation of 

position data. To compute densities at runtime, we have to approximate densities or 
assume simplifications. There exist two basic approaches: 

• We assume only Gaussian densities and a linear dependency between states. As the 
two basic equations then significantly can be simplified, we get closed formulas. 
The Kalman filter is based on this idea. 

• We approximate complex densities with the help of simple densities. The most 
popular example, the Particle filter, approximates any density by a sum of so-called 
particles which actually are Dirac densities. Dirac densities have an infinite value 
at the given point, 0 elsewhere and an integral of 1. 

At this point, we briefly present these approaches. 

2.1   Kalman Filters 

The Kalman filter [13] is considered as one of the most important mathematical 
formalisms that deal with positioning. Detailed descriptions can be found in [9, 20]. 
The Kalman filter assumes a state vector x with arbitrary dimensions. For our 
scenarios, the state contains typical spatial state information, i.e. the position, but also 
orientation, speed and acceleration [2, 7, 10]. The state is unknown, but Gaussian 
distributed measurements y indirectly reflect information about the state. Further, two 
states at different points in time are linearly related, expressed by a matrix. 

A resulting probability density for x is Gaussian distributed expressed by a mean 
(the most probably state) and an error, expressed by an error covariance matrix. A 
computation step contains a time update phase based on equation (5) and a 
measurement update phase based on equation (4). For the assumptions made for 
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Kalman filters, the equations can be simplified to a few matrix multiplications and 
one matrix inversion. These computations can be performed efficiently, even on small 
computers or embedded systems. 

2.2   Particle Filters 

Particle filters [5, 8, 11] use a set of particles; each presents a specific potential state. 
A particle contains a state vector pi and a weight wi which reflects the probability 
density for this state. A probability density f can be approximated by 

∑
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where δ is the Dirac delta density. In principle, a particle can have multiple 
dimensions, but in contrast to Kalman filters, too many dimensions dilute to result. 
Typical state vectors only have three dimensions (e.g. 2D position and orientation). 

The so-called Motion Model that follows equation (5) moves all particles according 
to the relative movement density. This indirectly computes a convolution. The 
Perceptual Model that follows equation (4) assigns new weights according to multiple 
measurements at a point in time. This indirectly computes multiplying densities. 

Particle filters support a huge variety of densities. Increasing numbers of particles 
improve the precision, but also increase the required memory and processing time. 
Particle filters also have to face the degeneracy problem [4] where all but one particle 
have a weight near 0. Approaches such as Sequential Importance Sampling (SIS) [6] 
and Sampling Importance Resampling (SIR) [19] counteract this problem applying a 
resampling step to particles. 

2.3   Further Representations 

Further representations of position knowledge are grids, points and areas. The 
Position Probability Grid [3] stores the density values for equidistant positions. Grids 
require a huge amount of memory space and the potential positions are limited by the 
initial grid border. Thus, this approach is inappropriate for our intended scenarios. 

The Area model [15, 18] could be viewed as a simple statistical representation 
where the area border separates two regions with a uniform distributed position 
probability – inside the area the integral of probabilities is 1, outside it is 0. The 
computations based on this idea are quite simple (using the geometric intersection), 
but this simplification significantly dilutes the position knowledge, especially for 
Gaussian distributed sensor information. 

The Point model is the simplest approach to model location knowledge. For any 
sensor input it only stores the most probably corresponding point in space. This 
approach is only reasonable, if all positioning systems have a high accuracy and 
measured values are distributed with a certain mean (i.e. this prohibits COO). Even 
though it is very unlikely that the measured and the true location are identical, this 
approach sometimes is useful: multiple pieces of position information can be 
processed using a weighted average. To promote more accurate sensors, the reciprocal 
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value of the measurement variance can be used as a weight. For our intended 
scenarios, this approach does not provide sufficient expressiveness. 

2.4   Discussion 

A system that infers knowledge about the positions in order to detect context 
information or to support location-based services has to meet the following 
requirements [18]: 

• As many approaches to determine the current position based on the cell of origin 
(COO), such information has to be considered. Beyond a certain distance to an 
access point (especially outdoors), signal strengths do not significantly extend 
knowledge about the position [21], thus we often use the entire cell as set of 
potential positions.  

• A reasonable approach must be able to consider multiple alternative potential 
positions. E.g., consider a user is at the crossroads to two streets going in nearly the 
same direction. Further assume that the position data is not precise enough to 
detect the choice. For a certain time, we thus have to consider both paths for 
potential positions until further information determines the choice.  

• Negated information should be modelled. E.g., the current IP address may indicate 
that an end-user device does not reside a home. Not to reside somewhere means to 
reside nearly anywhere in the world and a nearly infinite space of potential 
positions has to be considered. 

• External spatial data should be integrated. A huge amount of spatial information 
(e.g. roadmaps, information about places) may only be accessible over network. 
An appropriate algorithm must be able to download additional spatial data at 
runtime. This especially means to limit the search space for data lookup as not an 
entire spatial database can be downloaded. 

We now check how existing approaches meet these requirements. 
If position data meet assumptions described in section 2.1, the Kalman filter 

extracts the maximum information about the position. Unfortunately, in some typical 
scenarios these presumptions are not valid: 

• COO measurements do not provide a Gaussian density with a certain mean; 
• negated information cannot be modelled at all;  
• alternative potential paths cannot be modelled as the system always assumes a 

single probable position;  

Particle filters relax some of the assumptions. Especially, they can follow alternative 
paths as some particles model one alternative and further particles a second one. 
However, if the number of parallel alternatives increases, the average number of 
particles decreases and thus the overall precision. Note that at least one particle has to 
be selected that follows the actual (but unknown) path of real positions. Thus, an 
appropriate number of particles has to be chosen beforehand to anticipate potential 
alternatives.  
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With a sufficient (usually high) number of particles, COO measurements can in 
principle be modelled. The negation, however, is difficult to express if we do not limit 
the potential space. Finally, both types of filters have their problems with external 
data as they expect to access all spatial information locally. 

Surprisingly, from the approaches described above, the Area model meets a high 
number of requirements: 

• we can model COO measurements using the cell border as modelled area; 
• we approximate Gaussian distributions by, e.g., the range of 95% measured 

positions (the so-called 2dRMS area for GPS [14]); 
• we can describe negations using borders that mark the outer area; 
• we can easily load additional data using the area as spatial index. 

The main drawback of the Area model is that after a few steps, the precision 
decreases dramatically and important information is destroyed. We thus looked for a 
new approach that on the one hand combines the benefits of the Area approach and on 
the other hand provides sufficient precision. 

3   The MAP3 Approach 

MAP3 (Multi-Area Probability-based Positioning by Predicates) introduces a new 
approach that deals with problems of comparable approaches described above. The 
main idea: 

• Any piece of information about the location at any point in time is mapped to a 
location predicate. As predicates form a kind of universal interface to any 
positioning system, they easily can be integrated into existing location driver 
structures such as the Nimbus VPS [17, 18] or the Location Stack [12]. 

• A predicate is mapped either to a probability density representation (for a predicate 
that describes a location of a single point in time) or a convolution operation (for a 
predicate that describes movement between two points in time). 

• If all predicates are processed, we get a set of densities – one for each considered 
time stamp. The application now can select a specific point in time. 

• Depending on the application, the most probable location (the centroid) or a set of 
local maximum values is computed. 

Fig. 1 presents the corresponding data flow. Important: we execute density operations 
(e.g. multiplication, convolution) with the help of geometric operations widely known 
in the area of spatial modelling. For this, so-called simple features [16] are used for 
which efficient software libraries are available. From the variety of geometric objects 
(e.g. points, line strings) we only require the multipolygon with holes (mph) that 
represents the most common approximating two-dimensional structure. An mph 
contains a number of polygons representing the surface. Each of it in turn contains a 
number of polygons that represent the holes in the surface. 

We assume that spatial information is represented in two dimensions. Table 1 
presents a selection of considered predicates. We can easily extend this list in the future. 
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Fig. 1. Data flow in MAP3  

Table 1. List of predicates 

Predicate Meaning Example 
Pos(t, x, y, σx, σy, ρ)  Gaussian distributed 2D-position GPS 
Dist(t, px, py, d, σ) Gaussian distributed  distance d to a 

fix point (px, py) 
Runtime or signal strength 
measurement to a base station 

Nearer(t, px, py, d) The distance to a fix point (px, py) is 
below d 

Circular cell 

InPoly(t, poly) The location is inside a polygon. Map matching – car must 
reside on roads 

Dir(t, px, py, α1, α2, m) From the viewpoint of (px, py) the 
position has a direction inside [α1, 
α2], maximum distance m  

Segmented antenna 

MaxSpeed(t1, t2, v) Maximum speed in this time interval Pedestrian with a maximum 
walking speed 

Some remarks: 

• σx, σy, σ are standard deviations of the respective Gaussian distribution, ρ the 
correlation coefficient. 

• t denotes the predicate's time (i.e. of the underlying measurement), t1, t2 describes a 
time interval. 

• MaxSpeed and InPoly can be defined without any point in time. In this case, they 
are considered as always valid.  

• Some predicates (details see section 3.2) can be modified using the Not modifier, 
which means that the opposite fact is true. E.g., Not(Nearer(t, px, py, d)) means, the 
distance to the fix position is equal or more than d. 

Fig. 2 illustrates the respective densities. As MaxSpeed leads to a special case relating 
two points in time, it is not shown here (see later). According to the considerations in 
section 2 we need at least the following operations on densities: computing the 
centroid and maximum values; multiplying two densities (see equation (4)) and 
convolving two densities (see equation (5)). 
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Fig. 2. Predicate densities 

A density representation should allow the efficient execution of these operations. In 
addition, the input densities and resulting densities for (4) and (5) should precisely be 
presented. The MAP3 approach represents a density f with the help of areas as follows 

∑
=

Λ=≈
n

i
ii mphpwpfpf

1

),()(ˆ)(  (7) 

In this equation 

• p describes a point in space (x, y), 
• n denotes the number of areas that approximate the density, 
• wi denotes a constant weight of an area, 
• mphi denotes the geometric description of an area and 

• Λ  the function 
⎪⎩

⎪
⎨
⎧ ∈

=Λ
otherwise0

 if1
),(

mphp
mphp   

(we can consider Λ as the characteristic function of mph). 

To be a density, f̂  has to cover a volume of one, i.e. 11 =⋅∑ = i
n
i i mphw . Here |mphi| 

denotes the surface area of the multipolygon, i.e. ∫Λ= dpmphpmph ii ),(: . 

Two different variations fulfil equation (7): 

• Variation 1: ii mphmph ⊂−1  for every i>1, i.e. we have an ordered list of areas by 

their size and each area is fully embedded into the next area.  
• Variation 2: ∅=∩ ji mphmph  for every ji ≠ . We have an ordered list of areas 

by their weights (from low to high). 

The two variations and their influence on the weights are illustrated in fig. 3. Both 
variations have their pros and cons that we discuss from the viewpoint of variation 2. 
The advantages of variation 2 are: 

• Each point p is enclosed by zero or one polygon, thus computing )(ˆ pf  is very 

easy. That is why the computation of maximum values also is simple. 
• Multiplying densities, two areas that do not overlap do not contribute to the result. 

Thus, the multiplication has an efficient realization. 
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Fig. 3. Variations to present densities with the help of f̂  

Drawbacks of variation 2: 

• Convolving two densities is more complex (see section 3.4). 
• Comparing a variation 1 representation for the same density, variation 2 has to 

encode additional holes. Thus, the memory space to store the mphs nearly doubles 
compared to variation 1. 

As these arguments nearly counterbalance, we introduce a further property into the 
discussion: the resampling operation. Typical multiplication and convolution 
operations increase the number of areas, thus, we need a resampling step that joins 
similar areas to a single area. We know an analogous operation for Particle filters. 

We conducted a number of experiments with different resampling operations, 
coded for the two variations. The only suitable resample operation that is both 
efficient and does not remove too much information is based on variation 2. Its idea is 
to unite areas that have similar weights: 

resample(density d): 
as long as d.n>maxArea 
   look up area k with 1.. −+− areaDecrkk wdwd  minimal 

   create new area with ∪
1

.
−+

=
←

areaDecrk

ki
inew mphdmph   

                    and new

areaDecrk

ki
iinew mphmphdww /.

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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=
 

   replace area k by the new area 
   remove areas k+1 ... k+areaDecr-1 from d 

 



254 J. Roth 

 

In this algorithm d.n denotes number of areas in the density, d.mphi the multipolygon 
for area i, and d.wi the weight of area i. This algorithm further requires two constants: 
maxArea – the maximum numbers of areas allowed in a density and areaDecr – the 
number of areas that are united in a single resampling step. 

Based on the considerations above, especially an effective resampling mechanism, 
we chose variation 2 for the density representation. 

3.1   Multiple Predicates at a Single Point in Time 

According to equation (4), we have to multiply all densities representing the same 
time. After normalizing, we then get the result density. For two approximated 

densities 1f̂ , 2f̂  we use the equation 
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(8) 

where ji mphmph 21 ∩  is the geometric intersection of two areas and ĉ  the 

normalization factor.  
Some remarks on efficiency: First, only those mph1i, mph2j that overlap contribute 

to the result, thus an efficient algorithm first tests this, before the actual intersection is 
computed. As the overlapping test knows efficient implementations (e.g. using 
bounding boxes), this approach is reasonable.  

Second, we have predicates that only contain a single area (e.g. Nearer). Such 
predicates can efficiently be multiplied by another density as the overall number of 
areas does not increase. 

Third, even though we get O(n1
.n2) resulting areas, the actual number of 

overlapping mphs is far less than n1
.n2. Note that low numbers of areas, e.g. 10, lead 

to sufficiently precise results, thus typically 20-50 areas are included in the result. But 
as the result may be input for further multiplications, a resampling step is required.  

The multiply algorithm can be sketched as follows: 

multiply(density d1, density d2): 
∅←result  

for i=1 to d1.n do 
   for j=1 to d2.n 
      if ∅≠∩ ji mphdmphd .. 21  

         create new area with jinew mphdmphdmph .. 21 ∩←  

                          and jinew wdwdw .. 21 ⋅←  

         add new area to result  
normalize result  
resample result 
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To normalize the result, we sum up the surface areas multiplied by their weights, i.e. 
compute ∑← ii mphwI . We then adapt all weights Iww ii /← . 

3.2   Modelling Negations 

The Not modifier negates a predicate. Usually, this means to specify a very large area 
of possible positions by a single density. E.g., Not(Nearer(t, px, py, d)) specifies all 
positions outside a given circle. We can consider this area as infinite, even though in 
reality, the respective area is limited by the Earth's surface. This means that the actual 
probability density at any given point is in fact 0, i.e. meaningless. 

More formally: if F is the cdf and f the pdf of a predicate, the negation can be 
expressed by 

1 – P(X ≤ x, Y ≤ y) = 1 – F(x, y) = 1 – ∫ ∫
∞− ∞−

x y

dbdabaf ),(  (9) 

To express the negated predicate by a density, we need a density f that fulfils  

1 – ∫ ∫
∞− ∞−

x y

dbdabaf ),( = ∫ ∫
∞− ∞−

x y

dbdabaf ),(  and ∫ ∫
∞

∞−

∞
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= 1),( dbdabaf  (10) 

Unfortunately, it is not possible to provide a close description for f or f̂ . A possible 

solution to avoid zero densities would be to presume a limited area of potential 
positions. To be useful, this maximum area has to be small enough to avoid densities 
near to 0. The important drawback of this solution is the lack of a priori knowledge 
about potential positions. This is an important difference to the robotic (indoor) 
scenario. 

To achieve a solution for negated predicates, we propose the following approach: 

• Only predicates that have a unique density inside a finite area and a zero density 
outside can be negated. Such predicates are Nearer, InPoly, and Dir. Only such 
densities are reasonable densities for negations. 

• The negation can only be applied inside a multiplication of two densities, where 
the second density has to be non-negated. This especially means, at least one non-
negated predicate is required for a certain point in time. 

To give a realistic example that conflicts with the second assumption: If we had three 
predicates stating "not at home", "not at work" and "not on any road", we still had a 
virtually infinite space to consider. Only with an additional positive predicate (e.g. 
"inside GSM cell XY"), we can construct an area of probable positions. 

According to these considerations, we now can compute negations: let f1 be a 
density and f2 a density that should be negated. Then 

21 ffcf result ⋅⋅=  where 
⎪⎩

⎪
⎨
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=
otherwise0
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)(

2
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pf
pf  (11) 
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Again, c is the normalizing factor. Note that 2f is not a density, as it does not produce 

an integral of one. Thus, we explicitly mark a density as negated and store the original 
non-negated density.  

To actually perform this operation, we simply subtract the mph of f2 from all areas 
of f1 and normalize the result. This means, the multiply operation with a negated 
density knows an efficient geometric realization. We present the algorithm together 
with an extension to model uncertainty in the next section. 

3.3   Modelling Uncertainty 

In contrast to positive predicates, negative statements about the position can be 
uncertain. If I got sensor information stating a certain position (e.g. a Pos predicate), 
the only uncertainty can be a measurement error that is already modelled by the 
Gaussian distribution. In contrast, negative predicates may be uncertain in a more 
general meaning. If, e.g., I do not receive my home WLAN, I may be outside my 
home area, but also, with a small probability, I am at home and my WLAN router is 
switched off. To model these characteristics, we can append a general probability pr 
to the Not modifier. E.g., Not(Nearer(t, px, py, d), 0.9) means: 

• with a probability of 90%, the position is outside the specified circle; 
• with a probability of 10%, the position may be anywhere (i.e. inside or outside the 

circle). 

We could use this predicate to, e.g., model a circular WLAN cell, where the access 
point's uptime is 90% on average.  

For pr=1 we get the definite negative statement as introduced above. We can 
modify equation (11) as follows 

     ))1(( 121 fprffprcf result ⋅−+⋅⋅⋅=  (12) 

⎪⎩

⎪
⎨
⎧

=⋅−

==⋅−+⋅
⋅=

0)( if)()1(

1)( if)()()1()(
)(

21

2111

pfpfpr

pfpfpfprpfpr
cpfresult  (13) 

Based on these equations, we can easily derive an algorithm that is fully built on 
geometric mph operations: 

multiplyNegation(density d1, density d2, pr): 
∅←result   

for i=1 to d1.n do 
   create new area with 121 .\. mphdmphdmph inew ←    

      and inew wdw .1←                // case 1)(2 =pf  

   if not empty add new area to result  
   create new area with 121 .. mphdmphdmph inew ∩←   

      and )1(.1 prwdw inew −⋅←          // case 0)(2 =pf  

   if not empty add new area to result 
normalize result 



 Inferring Position Knowledge from Location Predicates 257 

 

For every area of the first density up to two areas are created: the first area represents 

the case 1)(2 =pf  of equation (13), the second area represents the second case. 

3.4   Modelling Motion over Time 

Until now, we only considered multiple predicates at a single point in time. But what, 
if we had multiple predicates at different times. This is the usual case for position 
measurements: we do not only get current sensor input, but can consider all recent 
sensor information to improve the current estimation. For this, we have to model 
spatial movement between two points in time.  

Kalman and Particle filters often assume precise movement sensors such as 
odometers. In our intended scenarios, however, such sensors are often not available. 
E.g., for a pedestrian it is not possible to explicitly measure the direction and distance 
she or he walked in the last 10 seconds. Usually, the only mechanism to detect 
movement is to build vectors between last measured absolute positions. But these 
positions are already considered by the mechanisms presented before, thus they would 
not increase the overall position knowledge. 

If no relative movement sensors are available, we only can define a maximum 
speed, derived from knowledge about the movement context (e.g., to be a pedestrian, 
or to drive a car). A maximum movement distance for a certain time is defined by a 
circular density with centre at the zero point, with a unique density inside the circle 
and 0 outside, i.e. 

( )
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⎪
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In the following we describe how to convolve an arbitrary density with such a density 
c. The convolution (equation (5)) then simplifies as follows: 
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This means, we have to approximate the inner integral and create a sum. As the 
convolution operation is very complex, we can due to space limitations of this paper 
only provide the idea here. 

We have to consider two cases as illustrated in fig. 4. If the area of an mph is large 
compared to the circle, the area that covers all points with a non-zero integral can be 
computed using the so-called buffer operation [16]. The buffer contains all points that 
do not exceed a certain distance to an mph. The buffer operation is available in typical 
geometric software libraries and can efficiently be executed. 

Fig. 4 (upper right) shows the buffers for three integrals: the maximum integral 
(inner buffer), 50% if the maximum (second buffer) and an integral of 0 (outer 
buffer). With a linear approximation (that produces a maximum error of 5.8%) we can 
easily compute any degree between 0 and the maximum integral. 
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Fig. 4. Cases to convolve densities 

The second case is more difficult. We can easily see that for very large circles, the 
area of non-zero integrals converts itself to a circle. For smaller circles we get a bulky 
shape as shown in fig. 4 lower right. To compute this shape, we would need a new 
mph operation that we call inverse buffer: similar to the buffer, it contains all points 
that do not exceed a certain distance, but in contrast to the traditional buffer, we do 
not use the distance with the smallest Euclidean value, but the largest one. 

Unfortunately, the inverse buffer operation is usually not available as library 
function. Thus, we conducted some experiments using circular approximations. 
Usually, these approximations provide sufficient precision for our intended scenarios. 

Independent from the case, we can produce a number of areas for every mph of the 
second density. The number defines the convolution’s precision. As the overall 
number of areas increases, a final resampling step is required. 

3.5   Generating Results 

With our density representation, it is very easy to compute the centroid which 
represents the most probable position based on all processed predicates. Obviously, 
the centroid can be computed according to the equation 
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⋅

⋅⋅
= ii

ii

ii wmphmphcentroid
wmph

wmphmphcentroid
centroid )(
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Note that for mphs there exist efficient centroid functions.  
Often, the centroid does not reflect the intension, especially if we follow multiple 

alternative paths as introduced in section 2.4. The centroid can, e.g., reside inside a 
hole with low probabilities. Thus, a further algorithm computes the set of local 
maxima. At this point we only give the idea of this algorithm: 

• As the areas are sorted by their wi, it is easy to select the absolute maximum value.  
• For the selected maximum, we can delete areas that belong to this maximum going 

"downhill", i.e. we delete such neighbouring areas with smaller weights. 
• From the remaining areas, we select the next maximum and so forth. 
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This algorithm is a typical hill climbing algorithm (even though we actually walk 
downhill). This approach is efficient: First, )(ˆ pf  can easily be computed for every 
position p. Second, the neighbourhood relation can efficiently be tested using an mph 
distance operation. Note that for variation 1 (see fig. 3) this approach would be much 
more difficult, as "hills" would be modelled by multiple areas. 

Finally, we have to argue, why MAP3 is able to deal with external data as required 
in section 2.4. Consider a user with a GPS receiver. The last measured position 
indicates a subway station before reception fails inside the subway. We apply an 
InPoly predicate that defines all conceivable connected subway stations. As we only 
have external access to subway coordinates, MAP3 has to generate a look-up request 
to the subway's spatial database. 

In contrast to comparable approaches, it is easy for MAP3 to compute all 
conceivable positions (i.e. those with f(p)>0), which is simply the geometric union of 
all mph areas. Kalman filters do not explicitly identify improbable positions. 
Affirmed knowledge about probabilities in Particle filters is only available for those 
positions represented by particles. Thus, a complex heuristic would be required to 
compute an area with non-zero probabilities. 

As in our case the area of potential position can easily be computed, we get a 
simple mechanism to access external data: we use this area as spatial index to external 
databases. To get a most useful index, we process external data very late in the chain 
of predicates.  

Considering the characteristics of all involved predicate types, we now can define 
the procedure to process location predicates as follows: 

1. We identify the earliest time t for which non-processed predicates exist. We then 
multiply predicate densities for t according to the priority (1) available convolution 
results (2) non-negated, local predicates; (3) negated, local predicates (4) external 
predicates, using the prior result as spatial index. 

2. For any time t2 defined by further predicates, we produce a convolution for (t, t2). 
3. We go back to 1 until all predicates are processed. 

After terminating the loop, all predicates are processed and we get a list of densities 
according to fig. 1. We finally can compute centroids or maximum values for a 
desired time stamp. 

4   Experimental Results 

We conducted several experiments to verify the approach. Not surprisingly, MAP3 
works well, if the position input provides a high precision such as position data from 
GPS. Compared to Kalman and Particle filters, our new approach leads to nearly the 
same results in such scenarios. 

The benefit becomes apparent, if we process typical pieces of information available 
in location-based service scenarios. Here, we have to consider COO input, especially 
with negations. Kalman and Particle filters have significant problems with these data 
as discussed above, but our approach still works properly. 

We consider a scenario as presented in fig. 5. 
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Fig. 5. The sample scenario 

A walker promenades at a lakeside. Every minute, his mobile device tries to receive 
GSM and WLAN cell information. We assume the device can receive up to two GSM 
cells and one WLAN. The track in fig. 5 first passes cell GSM1, then the overlapping 
area and finally only cell GSM2. We further know that inside GSM2 there is a 
WLAN cell that we do not receive. The WLAN cell has a 90% uptime. According to 
these data, we derive the location predicates as presented in table 2. 

Table 2. Input predicates 

Time Predicate Meaning 
- MaxSpeed(5km/h) Pedestrians are not faster than 5km/h 
- Not(InPoly(LAKE_POLY)) Pedestrians cannot walk on water 
1 min InPoly(1min, GSM1_POLY) Receiving cell GSM1 
2 min InPoly(1min, GSM1_POLY) 

InPoly(1min, GSM2_POLY) 
Receiving both GSM cells 

3 min InPoly(1min, GSM2_POLY) 
Not(InPoly(1min, GSM1_POLY)) 
Not(Nearer(2min, WLAN_CENTER,
                    WLAN_RADIUS),0.9) 

Receiving only cell GSM2 
Not GSM1 
WLAN cell is not in range and the WLAN 
has an uptime of 90% 

These predicates undergo the MAP3 process as presented in section 3. In summary, 
the process executed 2 convolutions, 3 multiplications and 5 multiplications with 
negation. Fig. 6 shows the results. 

We get the first result after one minute. As we know not to be inside the lake, the 
remaining cell GSM1 covers the potential positions. In this case, our maximum value 
computation replies two most probable positions (fig. 6b, indicated by the arrows). 
This is a typical case of two alternatives as discussed in section 2.4. 

The next step (2 min) takes into account the convolution (based on the MaxSpeed 
predicate). Looking at the last step (3 min), we see a plateau with low probability and 
a peak that indicates the most probable position. The plateau is a result of the 
WLAN’s 10% downtime. This plateau does not significantly contribute to the result 
for t = 3 min, but as further measurements may indicate that this area covers the only 
possible positions, it is important to preserve this information. 
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Fig. 6. Computed densities 

In this example, the final position estimation considered all given information: the 
position is outside the lake, it considered the received (and not received) cells and it 
considered the maximum speed. The density presented in fig. 5d thus contains much 
more information than outputs of comparable approaches. 

We chose this simple example due to presentation reasons. We conducted much 
more complex evaluations that in principle show similar results. With the MAP3 
approach we effectively are able to derive probable positions even from uncertain 
input data such as presented in this example.  

5   Conclusion and Future Work 

In this paper we presented the new MAP3 approach that infers knowledge about the 
current position from sets of location predicates. Whereas many current approaches 
assume precise and reliable information, our approach is also able to derive probable 
positions from widely used positioning systems based on the cell of origin paradigm. 

As main benefits, MAP3 is able to deal with negated and uncertain predicates, 
alternative paths and non-Gaussian densities that often appear in location- or context-
based scenarios. Especially, MAP3 is able to specify spatial indices to access external 
spatial databases. Our approach heavily makes use of geometric operations widely 
available and efficiently implemented in many tool environments, software libraries 
and spatial databases. 

Our current approach processes each unknown position separately. In the future we 
want to introduce predicates that relate multiple unknown positions to each others. 
This scenario becomes more and more important. Users may exchange their 
respective probabilities inside ad-hoc networks and improve their own position 
knowledge. If they are connected by, e.g., Bluetooth, they know to reside at the nearly 
same location. To incorporate this knowledge, we have to introduce a new predicate 
type and the respective processing mechanism. 
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